• Title/Summary/Keyword: Detect Algorithm

Search Result 2,757, Processing Time 0.034 seconds

Evaluation of Insulation Deterioration for the Development of SVM Algorithm to Diagnose OF Cable (OF 케이블 진단용 SVM 알고리즘 개발을 위한 절연열화 평가)

  • Kwak, Byeong Sub;Jun, Tae-Hyun;Kim, Ah-Reum;Park, Hyun-joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.263-273
    • /
    • 2019
  • South Korea's OF cable is reaching its expected design life of 30 years, and as a result, the risk of failure is increasing. Therefore, it is necessary to diagnose the long-term operating OF cables through accurate diagnosis at the right time to prevent the failure. Currently, the KEPCO periodically conducts DGA. However, the gas found in DGA is caused by oil deterioration as well as insulation paper. Therefore, the analysis of the degree of polymerization and furan compounds which is an evaluation of insulation paper considered to be the life of OF cables is required. In addition, the results of the evaluation of deterioration of insulation paper need to be checked for correlation with the results of DGA. In this study, DGA carried out through GC, the degree of polymerization was analyzed using an automatic viscometer, and HPLC was used to detect the furan compounds. In addition, the obtained results were applied to the SVM technique, which was recently introduced to determine abnormalities in OF cable. And the results which were accurate and reliable were obtained.

Color Vision Based Close Leading Vehicle Tracking in Stop-and-Go Traffic Condition (저속주행환경에서 컬러비전 기반의 근거리 전방차량추적)

  • Rho, Kwang-Hyun;Han, Min-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3037-3047
    • /
    • 2000
  • This paper describes a method of tracking a close leading vehicle by color image processing using the pairs of tail and brake lights. which emit red light and are housed on the rear of the vehicle in stop-and-go traffic condition. In the color image converted as an HSV color model. candidate regions of rear lights are identified using the color features of a pair of lights. Then. the pair of tailor brake lights are detected by means of the geometrical features and location features for the pattern of the tail and brake lights. The location of the leading vehicle can be estimated by the location of the detected lights and the vehicle can be tracked continuously. It is also possible to detect the braking status of the leading vehicle by measuring the change in HSV color components of the pair of lights detected. In the experiment. this method tracked a leading vehicle successfully from urban road images and was more useful at night than in the daylight. The KAV-Ill (Korea Autonomous Vehicle- Ill) equipped with a color vision system implementing this algorithm was able to follow a leading vehicle autonomously at speeds of up to 15km!h on a paved road at night. This method might be useful for developing an LSA (Low Speed Automation) system that can relieve driver's stress in the stop-and-go traffic conditions encountered on urban roads.

  • PDF

Objective and Quantitative Evaluation of Image Quality Using Fuzzy Integral: Phantom Study (퍼지적분을 이용한 영상품질의 객관적이고 정량적 평가: 팬톰 연구)

  • Kim, Sung-Hyun;Suh, Tae-Suk;Choe, Bo-Young;Lee, Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.201-208
    • /
    • 2008
  • Physical evaluations provide the basis for an objective and quantitative analysis of the image quality. Nonetheless, there are limitations in using physical evaluations to judge the utility of the image quality if the observer's subjectivity plays a key role despite its imprecise and variable nature. This study proposes a new method for objective and quantitative evaluation of image quality to compensate for the demerits of both physical and subjective image quality and combine the merits of them. The images of chest phantom were acquired from four digital radiography systems on clinic sites. The physical image quality was derived from an image analysis algorithm in terms of the contrast-to-noise ratio (CNR) of the low-contrast objects in three regions (lung, heart, and diaphragm) of a digital chest phantom radiograph. For image analysis, various image processing techniques were used such as segmentation, and registration, etc. The subjective image quality was assessed by the ability of the human observer to detect low-contrast objects. Fuzzy integral was used to integrate them. The findings of this study showed that the physical evaluation did not agree with the subjective evaluation. The system with the better performance in physical measurement showed the worse result in subjective evaluation compared to the other system. The proposed protocol is an integral evaluation method of image quality, which includes the properties of both physical and subjective measurement. It may be used as a useful tool in image evaluation of various modalities.

  • PDF

Reliability and Data Integration of Duplicated Test Results Using Two Bioelectrical Impedence Analysis Machines in the Korean Genome and Epidemiology Study

  • Park, Bo-Young;Yang, Jae-Jeong;Yang, Ji-Hyun;Kim, Ji-Min;Cho, Lisa-Y.;Kang, Dae-Hee;Shin, Chol;Hong, Young-Seoub;Choi, Bo-Youl;Kim, Sung-Soo;Park, Man-Suck;Park, Sue-K.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.6
    • /
    • pp.479-485
    • /
    • 2010
  • Objectives: The Korean Genome and Epidemiology Study (KoGES), a multicenter-based multi-cohort study, has collected information on body composition using two different bioelectrical impedence analysis (BIA) machines. The aim of the study was to evaluate the possibility of whether the test values measured from different BIA machines can be integrated through statistical adjustment algorithm under excellent inter-rater reliability. Methods: We selected two centers to measure inter-rater reliability of the two BIA machines. We set up the two machines side by side and measured subjects' body compositions between October and December 2007. Duplicated test values of 848 subjects were collected. Pearson and intra-class correlation coefficients for inter-rater reliability were estimated using results from the two machines. To detect the feasibility for data integration, we constructed statistical compensation models using linear regression models with residual analysis and R-square values. Results: All correlation coefficients indicated excellent reliability except mineral mass. However, models using only duplicated body composition values for data integration were not feasible due to relatively low $R^2$ values of 0.8 for mineral mass and target weight. To integrate body composition data, models adjusted for four empirical variables that were age, sex, weight and height were most ideal (all $R^2$ > 0.9). Conclusions: The test values measured with the two BIA machines in the KoGES have excellent reliability for the nine body composition values. Based on reliability, values can be integrated through algorithmic statistical adjustment using regression equations that includes age, sex, weight, and height.

An Analysis on Response Characteristics of a Dual Neutron Logging using Monte Carlo Simulation (Monte Carlo 모델링을 이용한 이중 중성자검층 반응 특성 분석)

  • Won, Byeongho;Hwang, Seho;Shin, Jehyun
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Monte Carlo N-Particle (MCNP) modeling algorithm based on the Monte Carlo method was used to perform the simulation of neutron logging in order to increase the reliability and utilization of neutron logs applied in geological and resource engineering fields. To perform the simulation using MCNP, we used a realistic three-dimensional configuration of neutron sonde and formation. Validation of the modeling was confirmed by comparing the calibration curves of sonde manufacture with those calculated by MCNP modeling. After the validation, lithology effects, pore fluid effects, borehole diameter change, casing effect, and effects of borehole water level were investigated through modeling experiments. Numerical tests indicate that changes in neutron count ratio according to the lithology were quantitatively understood. In case of a borehole with a diameter of 3 inches, ratio of counting rates was higher than expected to be interpreted as borehole fluid has small effects on neutron logging. Effect of casing was also small in general, particular when porosity increases. Since modeling results above the groundwater level showed a tendency opposite to those below the groundwater level, neutron logs can be used to detect groundwater level. The modeling results simulated in this study for various borehole environments are expected to be used for data processing and interpretation of neutron log.

Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers

  • Lee, Y.;Bok, J.D.;Lee, H.J.;Lee, H.G.;Kim, D.;Lee, I.;Kang, S.K.;Choi, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.299-306
    • /
    • 2016
  • Body temperature (BT) monitoring in cattle could be used to early detect fever from infectious disease or physiological events. Various ways to measure BT have been applied at different locations on cattle including rectum, reticulum, milk, subcutis and ear canal. In other to evaluate the temperature stability and reliability of subcutaneous temperature (ST) in highly fluctuating field conditions for continuous BT monitoring, long term ST profiles were collected and analyzed from cattle in autumn/winter and summer season by surgically implanted thermo-logger devices. Purposes of this study were to assess ST in the field condition as a reference BT and to determine any location effect of implantation on ST profile. In results, ST profile in cattle showed a clear circadian rhythm with daily lowest at 05:00 to 07:00 AM and highest around midnight and rather stable temperature readings (mean${\pm}$standard deviation [SD], $37.1^{\circ}C$ to $37.36^{\circ}C{\pm}0.91^{\circ}C$ to $1.02^{\circ}C$). STs are $1.39^{\circ}C$ to $1.65^{\circ}C$ lower than the rectal temperature and sometimes showed an irregular temperature drop below the normal physiologic one: 19.4% or 36.4% of 54,192 readings were below $36.5^{\circ}C$ or $37^{\circ}C$, respectively. Thus, for BT monitoring purposes in a fever-alarming-system, a correction algorithm is necessary to remove the influences of ambient temperature and animal resting behavior especially in winter time. One way to do this is simply discard outlier readings below $36.5^{\circ}C$ or $37^{\circ}C$ resulting in a much improved mean${\pm}$SD of $37.6^{\circ}C{\pm}0.64^{\circ}C$ or $37.8^{\circ}C{\pm}0.55^{\circ}C$, respectively. For location the upper scapula region seems the most reliable and convenient site for implantation of a thermo-sensor tag in terms of relatively low influence by ambient temperature and easy insertion compared to lower scapula or lateral neck.

Development of Algorithm and Program for the Ground Fault Detection in Ungrounded Distribution Power System (비접지 배전계통 지락고장 검출 알고리즘 및 프로그램 개발)

  • Park, So-Young;Shin, Chang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2619-2627
    • /
    • 2009
  • The ground fault is occupying 70% among the total number of faults in ungrounded distribution power system. When the ground fault occurs in ungrounded system, the fault current is so small that it is hard to detect. But fault handling is very important because to continue power supply during fault conditions may cause the fault spreading and the distribution device in trouble. This paper presents the fault line detection method by using GPT signal detecting zero sequence voltage, and the fault section detection method by detecting whether GPT signal is disappeared or not during shifting normally open switch, which is connecting switch between distribution lines with open state in order to restore the outage area under emergency situation, and during isolating each section one by one which belongs to the fault line. This method is efficient because there is no whole power interruption during the fault section detection, and it is possible to perform both the fault section detection and the service restoration for the outage area at the same time, and it can apply to various distribution system configuration. Program for the fault restoration was developed applying proposed method, and it has been validated by applying to the pilot project of distribution automation system in Vietnam which has the ungrounded distribution system.

LED lighting control system using the variable FOV according to movements of stage actors based on multi sensor (멀티센서기반 무대배우 이동에 따른 FOV가변형 LED조명 제어 시스템)

  • Koo, EunJa;Cha, Jaesang;Kim, Daeho;Park, Myungsook
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Recently, an importance of culture industry has been emphasized through an increased income level, spare time and changed values of modern people. And demands of the performance, arts, exhibit are steadily being increased. However the stage equipment depends on foreign manufactures on account of the inactive domestic technical skills. Especially in the lighting direction part, it is essential to control the lighting source and detect the moving line of actors but it generally uses the manual control type and realization of actor's moving line regardless of existing IT-based technologies. Also the system operation of existing sensor-based tracking and detecting technologies depends on the main lighting source of the stage. Therefore, this paper proposed LED lighting control system using the variable FOV and multi sensor-based tracking algorithm, which are possible to efficiently track the stage actors and direct the stage lights. Also we demonstrated the practicality and possibility of realization through the integrated experiment of the proposed system and implementation of the salient hardware, software. Additionally, the usefulness of proposed system was demonstrated using performance simulations and actual measurements of implemented sensor output.

Integration of Ontology Open-World and Rule Closed-World Reasoning (온톨로지 Open World 추론과 규칙 Closed World 추론의 통합)

  • Choi, Jung-Hwa;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.282-296
    • /
    • 2010
  • OWL is an ontology language for the Semantic Web, and suited to modelling the knowledge of a specific domain in the real-world. Ontology also can infer new implicit knowledge from the explicit knowledge. However, the modeled knowledge cannot be complete as the whole of the common-sense of the human cannot be represented totally. Ontology do not concern handling nonmonotonic reasoning to detect incomplete modeling such as the integrity constraints and exceptions. A default rule can handle the exception about a specific class in ontology. Integrity constraint can be clear that restrictions on class define which and how many relationships the instances of that class must hold. In this paper, we propose a practical reasoning system for open and closed-world reasoning that supports a novel hybrid integration of ontology based on open world assumption (OWA) and non-monotonic rule based on closed-world assumption (CWA). The system utilizes a method to solve the problem which occurs when dealing with the incomplete knowledge under the OWA. The method uses the answer set programming (ASP) to find a solution. ASP is a logic-program, which can be seen as the computational embodiment of non-monotonic reasoning, and enables a query based on CWA to knowledge base (KB) of description logic. Our system not only finds practical cases from examples by the Protege, which require non-monotonic reasoning, but also estimates novel reasoning results for the cases based on KB which realizes a transparent integration of rules and ontologies supported by some well-known projects.

Implementation of Massive FDTD Simulation Computing Model Based on MPI Cluster for Semi-conductor Process (반도체 검증을 위한 MPI 기반 클러스터에서의 대용량 FDTD 시뮬레이션 연산환경 구축)

  • Lee, Seung-Il;Kim, Yeon-Il;Lee, Sang-Gil;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.21-28
    • /
    • 2015
  • In the semi-conductor process, a simulation process is performed to detect defects by analyzing the behavior of the impurity through the physical quantity calculation of the inner element. In order to perform the simulation, Finite-Difference Time-Domain(FDTD) algorithm is used. The improvement of semiconductor which is composed of nanoscale elements, the size of simulation is getting bigger. Problems that a processor such as CPU or GPU cannot perform the simulation due to the massive size of matrix or a computer consist of multiple processors cannot handle a massive FDTD may come up. For those problems, studies are performed with parallel/distributed computing. However, in the past, only single type of processor was used. In GPU's case, it performs fast, but at the same time, it has limited memory. On the other hand, in CPU, it performs slower than that of GPU. To solve the problem, we implemented a computing model that can handle any FDTD simulation regardless of size on the cluster which consist of heterogeneous processors. We tested the simulation on processors using MPI libraries which is based on 'point to point' communication and verified that it operates correctly regardless of the number of node and type. Also, we analyzed the performance by measuring the total execution time and specific time for the simulation on each test.