• Title/Summary/Keyword: Desired Channel States

Search Result 12, Processing Time 0.018 seconds

Blind Channel Equalization Using Conditional Fuzzy C-Means

  • Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.965-980
    • /
    • 2011
  • In this paper, the use of conditional Fuzzy C-Means (CFCM) aimed at estimation of desired states of an unknown digital communication channel is investigated for blind channel equalization. In the proposed CFCM, a collection of clustered centers is treated as a set of pre-defined desired channel states, and used to extract channel output states. By considering the combinations of the extracted channel output states, all possible sets of desired channel states are constructed. The set of desired states characterized by the maximal value of the Bayesian fitness function is subsequently selected for the next fuzzy clustering epoch. This modification of CFCM makes it possible to search for the optimal desired channel states of an unknown channel. Finally, given the desired channel states, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In a series of simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The experimental studies demonstrate that the performance (being expressed in terms of accuracy and speed) of the proposed CFCM is superior to the performance of the existing method exploiting the "conventional" Fuzzy C-Means (FCM).

Self-Organizing Map for Blind Channel Equalization

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.609-617
    • /
    • 2010
  • This paper is concerned with the use of a selforganizing map (SOM) to estimate the desired channel states of an unknown digital communication channel for blind equalization. The modification of SOM is accomplished by using the Bayesian likelihood fitness function and the relation between the desired channel states and channel output states. At the end of each clustering epoch, a set of estimated clusters for an unknown channel is chosen as a set of pre-defined desired channel states, and used to extract the channel output states. Next, all of the possible desired channel states are constructed by considering the combinations of extracted channel output states, and a set of the desired states characterized by the maximal value of the Bayesian fitness is subsequently selected for the next SOM clustering epoch. This modification of SOM makes it possible to search the optimal desired channel states of an unknown channel. In simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The performance of the proposed method is compared with those of the "conventional" SOM and an existing hybrid genetic algorithm. Relatively high accuracy and fast search speed have been achieved by using the proposed method.

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

A Modified FCM for Nonlinear Blind Channel Equalization using RBF Networks

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. In its searching procedure, all of the possible desired channel states are constructed with the elements of estimated channel output states. The desired state with the maximum Bayesian fitness is selected and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

Gaussian Weighted CFCM for Blind Equalization of Linear/Nonlinear Channel

  • Han, Soo-Whan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.169-180
    • /
    • 2013
  • The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.

A Study on Blind Nonlinear Channel Equalization using Modified Fuzzy C-Means (개선된 퍼지 클러스터 알고리즘을 이용한 블라인드 비선형 채널등화에 관한 연구)

  • Park, Sung-Dae;Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1284-1294
    • /
    • 2007
  • In this paper, a blind nonlinear channel equalization is implemented by using a Modified Fuzzy C-Means (MFCM) algorithm. The proposed MFCM searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

  • PDF

Performance Improvement on Fuzzy C-Means Algorithm for Nonlinear Blind Channel Equalization (비선형 블라인드 채널등화를 위한 퍼지 클러스터 알고리즘의 성능개선)

  • Park, Seong-Dae;Han, Su-Hwan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.382-388
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

  • PDF

Blind Nonlinear Channel Equalization by Performance Improvement on MFCM (MFCM의 성능개선을 통한 블라인드 비선형 채널 등화)

  • Park, Sung-Dae;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2158-2165
    • /
    • 2007
  • In this paper, a Modified Fuzzy C-Means algorithm with Gaussian Weights(MFCM_GW) is presented for nonlinear blind channel equalization. The proposed algorithm searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function and Gaussian weighted partition matrix instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function(RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a simplex genetic algorithm(GA), a hybrid genetic algorithm(GA merged with simulated annealing(SA): GASA), and a previously developed version of MFCM. It is shown that a relatively high accuracy and fast search speed has been achieved.

A New Hybrid Genetic Algorithm for Nonlinear Channel Blind Equalization

  • Han, Soowhan;Lee, Imgeun;Han, Changwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.259-265
    • /
    • 2004
  • In this study, a hybrid genetic algorithm merged with simulated annealing is presented to solve nonlinear channel blind equalization problems. The equalization of nonlinear channels is more complicated one, but it is of more practical use in real world environments. The proposed hybrid genetic algorithm with simulated annealing is used to estimate the output states of nonlinear channel, based on the Bayesian likelihood fitness function, instead of the channel parameters. By using the desired channel states derived from these estimated output states of the nonlinear channel, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a conventional genetic algorithm(GA) and a simplex GA. In particular, we observe a relatively high accuracy and fast convergence of the method.

Nonlinear Blind Equalizer Using Hybrid Genetic Algorithm and RBF Networks

  • Han, Soo-Whan;Han, Chang-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1689-1699
    • /
    • 2006
  • A nonlinear channel blind equalizer by using a hybrid genetic algorithm, which merges a genetic algorithm with simulated annealing, and a RBF network is presented. In this study, a hybrid genetic algorithm is used to estimate the output states of a nonlinear channel, based on the Bayesian likelihood fitness function, instead of the channel parameters. From these estimated output states, the desired channel states of the nonlinear channel are derived and placed at the center of a RBF equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a conventional genetic algorithm(GA) and a simplex GA, and the relatively high accuracy and fast convergence of the method are achieved.

  • PDF