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Abstract

In this study, a hybrid genetic algorithm merged with simulated annealing is presented to solve nonlinear channel blind
equalization problems. The equalization of nonlinear channels is more complicated one, but it is of more practical use in real
world environments. The proposed hybrid genetic algorithm with simulated annealing is used to estimate the output states of
nonlinear channel, based on the Bayesian likelihood fitness function, instead of the channel parameters. By using the desired
channel states derived from these estimated output states of the nonlinear channel, the Bayesian equalizer is implemented to
reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance
of the proposed method is compared with those of a conventional genetic algorithm(GA) and a simplex GA. In particular, we
observe a relatively high accuracy and fast convergence of the method.
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1. Introduction

In digital communication systems, data
transmitted at regular intervals. Time dispersion caused by
non-ideal channel frequency response characteristics, or by
multipath transmission, may create inter-symbol interference
(ISI), and it has become a limiting factor in many
communication environments. Furthermore, the nonlinear IS]
that often arises in high speed communication channel
degrades the performance of the overall communication
system[1]. To overcome the effects of nonlinear ISI and to
achieve high-speed reliable communication, nonlinear channel
equalization is necessary.

symbols are

The conventional approach to linear or nonlinear channel
equalization requires an initial training period with a known
data sequence to learn the channel characteristics. In contrast
to standard equalization methods, the so-called blind (or
self-recovering) equalization methods operate without a
training sequence{2]. Because of its superiority, the blind
equalization method has gained practical interest during the
last few years. Most of the studies carried out so far are
focused on linear channel equalization and this is required by
the simplicity of the channel[3]-[7]. Only a few papers have
dealt with nonlinear channel models. The blind estimation of
Volterra kernels which characterize nonlinear channel was
derived in [8], and a maximum likelihood (ML) method
implemented via  expectation-maximization (EM) was
introduced in [9]. The Volterra approach suffers from its
enormous complexity. Furthermore the ML approach requires
some prior knowledge of the nonlinear channel structure to
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estimate the channel parameters. Major progress in nonlinear
channel blind equalization was made by Lin et al[l0], in
which they estimated the optimal channel output states instead
of direct estimation of channel parameters by using hybrid
simplex GA. The desired channel states were constructed from
these estimated channel output states, and placed at the center
of their RBF equalizer. With this method, the complex
modeling of the nonlinear channel can be avoided, and it has
turned out that the nonlinear channel blind equalization
problem can be transformed to the problem of determining the
optimal channel output states. In [10], it was shown that the
mathematical relation between the nonlinear channel output
states and the Bayesian likelihood for fitness (or cost) function
is too complex to be formulated or cannot be derived when
the structure of the nonlinear channel is unknown.
Subsequently the authors in [10] presented an optimization
method on hybrid genetic algorithm (hybrid simplex GA) as a
possible alternative. In our study, a new hybrid genetic
algorithm(GA merged with simulated annealing(SA): GASA)
to find optimal output states of a nonlinear channel is
investigated. GA[11][12] and SA[13][14], each of which
represents a  powerfu.  optimization  method, have
complementary strengths and weaknesses. While GA explores
the search space by means of the population of search points,
it suffers from poor convergence properties. SA, by contrast,
has good convergence properties, but it cannot explore the
search space by means of population. The proposed GASA is
constructed to obtain the synergy effect between them, and
shows a high estimation accuracy with fast convergence speed
in search of the optimal channel output states. Its performance
is compared with those of conventional GA and a simplex
GA. In the Bayesian equalizer is
implemented to reconstruct the transmitted symbols with each

experiments, the
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of three different styles of GA algorithm.

The organization of this paper is as follows: Section 2
includes a brief introduction to the equalization of nonlinear
channel and the Bayesian equalizer, and section 3 shows the
relation between the desired channel states and the channel
output states. In section 4, GASA with a Bayesian fitness
function is introduced. The simulation results including the
comparisons with the two other algorithms and the conclusions
are provided in section 5 and 6 respectively.

2. Modeling for nonlinear channel equalization
and Bayesian equalizer

A nonlinear channel equalization system is shown in Fig. 1.

Fig.1. The structure of nonlinear channel equalization system.

A digital sequence s(k) is transmitted through the nonlinear
channel, which is composed of a linear portion H(z) and
nonlinear portion N(z) governed by the following expressions.

R = g‘oh(z)s(k— ) o

W k)= Dy +D, k) +D, R +D, (R (2)

where p is the channel order and D; is the coefficient of the
ith nonlinear term. The transmitted symbol sequence s(k) is
assumed to be an equiprobable and independent binary
sequence taking values from #1, and the channel output is
corrupted by an additive white Gaussian noise e(k). Thus the
channel observation y(k) can be written in the form of

y(&)=3(k) + e(k) (3)

If g denotes the equalizer order(number of tap delay

elements in the equalizer), then there exist M=2 **¢*!
different input sequences

s(R)=[s(h), s(k—1),...,s(k—p—a)] 4)

that may be received (where each component is either 1 or
-1). For a specific channel order and equalizer order, the
number of input patterns that influence the equalizer is M, and
the input vector of equalizer without noise is

IE)=[k), 3k~ 1),.., k- )] ®)

The noise-free observation vector F( k)s referred to as
the desired channel states, and can be partitioned into two

sets, Y?L and Y, as shown in equations (6) and (7),
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depending on the value of s(k-d), where d is the desired time
delay.

YiL= 3(Rs(k—d)=+1 (6)

Y, = WEIs(k—d)=—1 M

The task of the equalizer is to recover the transmitted
symbols s(k-d) based on the observation vector y(k). Because
of the additive white Gaussian noise, the observation vector
y(k) is a random process having conditional Gaussian density
functions centered at each of the desired channel states, and
determining the value of s(k-d) becomes a decision problem.
Therefore, the Bayes decision theory[15]{16] can be applied to
derive the optimal solution for the equalizer, and this optimal
Bayesian equalizer solution is given by equations (8) and (9)
in [17].

fa0) = Few(— | wB-y 20D (g
- Slexn(— | ¥B-y7tl H20)

+1,
-1,

f g(v(k))=0

PO Y

3(k— d) =sgn ( f g(y(k))) :{

+1
i

where y1!and y;! are the desired channel states belong

to Y}l and !

2.0 Tespectively, and their numbers are

denoted as 7! and %7, and o is the noise variance. The

s
desired channel states, yt! and 7!, are derived by using
their relationship with the channel output states, which will be
explained in the next section. In our study, the optimal
Bayesian decision probability shown in equation (8) is used to
construct the fitness function of the proposed GASA algorithm
in section 4, and it is also utilized as an equalizer along with
equation (9) for the reconstruction of the transmitted symbols.

3. Relation between desired channel states
and channel output states

The desired channel states, y7! and y;. must be
known for the Bayesian equalizer in equations (8) and (9) to
reconstruct the transmitted symbols. If the channel order p=1
with H(z) by equation (10), the equalizer order g=1, the time
delay d=1, and the nonlinear portion D,=1, D,=0.1,
D,=0.05, D,=0.0 in Fig. 1, then the eight different
channel states(2 #?*?71=8) may be observed at the receiver
in the noise-free case, and the output of the equalizer should
be $(£— 1) as shown in Table 1.

H(2)=0.5+1.0z ! (10)

From Table 1, it can be seen that the desired channel states
[3(k), 3(k—1)]can be constructed from the elements of
the dataset, called "channel output states",

a,=1.89375, a,=—0.48125,

Ay, Q3, A3, Ay

as =0-53125’

where
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a ,==1.44375. The length of dataset, %, is determined by
the channel order, p, such as 27?*'=4. In general, if ¢g=1
and d=1, the desired channel states for Y1} and Y7} are
(ar, ar), (a1, a2), (a3, ai), (a3, az), and (az as), (a2 ai), (as,
as), (a4, ayg), respectively. In the case of 4=0, the channel

states, (a1, ar), (a1, az), (az, as), (a2, aq), belong to Y

(as, ap), (ag, az), (as as), (as aq) belong to YIII This
relation is valid for the channel that has a one-to-one mapping
between the channel inputs and outputs[10]. Thus the desired
channel states can be derived from the channel output states if
we assume p is known, and the main problem of blind
equalization can be changed to focus on finding the optimal
channel output states from the received patterns.

11, and

Table 1. The relation between desired channel states and
channel output states.

Nonlinear chanmel with H(2)=0.5+ 1.0z "', D;=1, D,=0.1,
D;=0.05, D,=0.0 and d=1
Transmitted ~ Output
symbols Desired channel states of'
equalizer
. By channel
Bstk-Dse-2)| P output states | 3(— 1
WEk—1) @y ay asa,
1 1 1 1.89375  1.89375 (a1, ar) 1
11 -1 | 189375 -048125| (a;, a2) 1
-1 1 1 0.53125  1.89375 (as, ajy) 1
-1 1 -1 0.53125 -0.48125 (a3, a2) 1
1 -1 1 -0.48125  0.53125 (az, a3) -1
1 -1 -1 -0.48125 -1.44375 (az, ay) -1
-1 -1 1 -1.44375 053125 (as, az) -1
-1 -1 -1 -1.44375 -1.44375 (as, ay) -1

It is known that the Bayesian likelihood( BL) defined in
equation (11) is maximized with the channel states derived
from the optimal channel output states[10][17][18]. Therefore,
it is utilized as the fitness function( FF) of the proposed
algorithm to find optimal channel output states after taking the
logarithm, which is shown in equation (12).

-1

BL= JImax (f3' (%), fz' (k)

k=0

(11)

where

fih=Yexp(— | yW—y}' %200,
f3'h=Zexp(= | y(W—y7'] */20%) and L is the
length of received sequences.

FF= %" log (max (/5'(. £3'(K) (12)

The optimal channel output states which maximize the
fitness function FF can not be obtained with the conventional
gradient methods, because the mathematical formulation

between the channel output states and FF cannot be
accomplished without knowing the channel structure. These
are shown in [10]. Thus, genetic algorithm(GA) and simulated
annealing(SA), each of which has shown the successful
performance in complex high dimensional optimal problems,
are considered in order to find the optimal solution of
equation (12). They have complementary strengths and
weaknesses, which are explained in the next section.
Therefore, in our approach, a new hybrid genetic algorithm
that combines the recombinative power of GA and the local
selection of SA to get the synergy effect between them, called
GASA, is applied to search for the optimal output states, and
is compared with conventional GA and the simplex GA
introduced in {10].

4. Algorithm for GASA to find optimal
channel output states

The basic idea of SA comes from the physical annealing
process done on metals and other substances. In metallurgical
annealing, a metal body is heated to near its melting point
and then slowly cooled beck down to room temperature. This
process will cause the global energy function of the metal to
reach an absolute minimum value eventually. If the
temperature is dropped toc quickly, the energy of the metallic
lattice will be much higher than this minimum because of the
existence of frozen lattice dislocations that would otherwise
eventually disappear because of thermal agitation. Analogous
to this physical behavior, SA allows a system to change its
state to a higher energy state occasionally so that it has a
chance to jump out of ocal minima and seek the global
minimum. The function to be minimized, i.e., the performance
index, is analogous to the energy of the metal, and the control
parameter, called temperature, is analogous to the temperature
of metal. Downhill moves are always accepted, whereas uphill
moves are accepted with an acceptance probability that is a
function of temperature. Its mathematical representation and
detail optimization mechanism are given in [13] and [14]. In
our particular application. the typical selection of SA is
reversed to have its fitness function maximized, which means
uphill moves are always accepted, whereas downhill moves
are accepted depending on the acceptance probability.

Another powerful optirrization algorithm, GA, is a search
algorithm based on an analogy with the process of natural
selection and evolutionary genetics. It combines the survival
of the fittest among string structures with a structured yet
randomized information exchange to form a search algorithm
with some of the innovative flair of a human search. It is
guided largely by the machinations of three operators:
selection, crossover, and mutation. In every generation, a new
set of artificial creatures is created using bits and pieces of
the old; an occasional new part is tried for good measure.
More details of the conventional GA algorithm can be found
in [11] and [12].

GA and SA have complementary strengths and weaknesses.
While GA explores the search space by means of the
population of search points, it suffers from poor convergence

261



International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 3, December 2004

properties. SA, by contrast, has good convergence properties,
but it cannot explore the search space by means of population.
However, SA does employ a completely local selection
strategy where the current candidate and the new modification
are evaluated and compared. To get the synergy effect
between GA and SA, many literatures have been considered
as the combination of each other and other optimization
algorithms [19]-[21]. Therefore, in this study, a new hybrid
genetic algorithm, which combines GA with SA to improve
the performance of GA, is investigated and applied to find the
optimal channel output states for nonlinear channel blind
equalization. The proposed GASA algorithm has the following
pseudo-code. In the proposed GASA, the Bayesian likelihood
shown in equation (12) is utilized as the fitness function, and
thus GASA searches the channel output states which maximize
the Bayesian likelihood.

Step 1: [nitialize population at random.

Step 2: Random generate the initial temperatures T[i] in a
specified region, where i is an index of individual.

Step 3: Calculate the fitness function shown in eq. (12) for
the initial population.

Step 4: Save the current population as parents.

Step 5: Apply crossover and mutation operators to current
population in order to get offsprings.

Step 6: Find the best-fit individual among parents, offsprings,
and current best solution, and then wupdate best
solution.

Step 7. Apply the selection function to all individuals
as:ith-individual = SA-selection(SA-selection(offspring[i],
parent[i], T[i]), best solution, T[i])

Step 8: Update the fitness of ith-individual

Step 9: T[i]=T[i]*cooling rate

Step 10: When the criterion is satisfied stop the algorithm.
Otherwise, go to Step 4.

In this pseudo-code, the selection of SA shown in
"SA-selection(SA-selection(offspring[i], parent[i], T[i]), best
solution, T[i])" had been modified to have its fitness function
maximized as mentioned before. For example, the function
"SA-selection(new, old, T)" calculates the acceptance
probability "P=exp(-(old-new)/T)". If "new>old', a
solution is selected, which means that an uphill move is
always accepted. And also, if "new<old" and "P>random
number in [0, 1]", a "new" solution will be selected, which
means that a downhill move is occasionally accepted
depending on P. An "old" solution will be selected for all
other cases. This selection of SA allows a downhill
move(same as uphill move in typical SA which minimizes the
fitness function) to explore the search space at higher
temperatures, and to exploit the search space accepting the
best solution's individual at lower temperatures. Thus in our
algorithm, the GA-selection is effectively replaced with an
SA-selection without increasing the of fitness
evaluations per generation. This means that the population
stores a diversity of annealing schedules, and the proposed
GASA can reach the optimum global solution with a relatively

llnewll

number

262

high speed even when it is trapped in local solution.
Additionally, it is not necessary to tune the initial temperature,
which should be done by a trial and error process in
traditional SA, because in GASA, it is set randomly for the
purpose of simplicity.

5. Experimental results and performance
assessments

The blind equalizations with GA, simplex GA, and GASA
are taken into account to show the effectiveness of the
proposed hybrid algorithm. Three nonlinear channels in [10]
and [22] are evaluated in the simulations. Channel 1 is shown
in Table 1, and the other two channels are as follows.

Channel 21  H(z)=0.5+1.0z: "}, D,=1, D,=0.1,
D;=-0.2, D,=0.0 and d=1
Channel 3: H(2)=0.5+1.02"Y, D,=1, D,=0.0,

D;=-0.9, D,=0.0 and d=1

The parameters of the optimization environments for each
of the algorithms are included in Table 2, and these are fixed
for all experiments. The choice of these specific parameter
values is not critical in the performance of the proposed
GASA. It is shown that the same quantities of population size,
crossover rate, and mutation rate are used for the performance
comparisons. For genetic optimization, a standard form of GA
with real number encoding is used, and the same structures of
chromosome (channel output states, a,, a,, @3, a, coded as
chromosome) and fitness function (defined by equation (12))
are utilized for all of three algorithms.

Table 2. Parameters of the optimization environments.

Population size 50
Maximum number of generation 100
GA
Crossover rate 0.8
Mutation rate 0.1
Population size 50
Maximum number of generation 100
. Crossover rate 0.8
Simplex GA Mutation rate 0.1
Elitist number 4
Q in the concurrent simplex method 4
Population size 50
Maximum number of generation 100
Crossover rate 0.8
GASA Mutation rate 0.1
Random initial temperature [0, 1}
Cooling rate 0.99

In our experiments, 10 independent simulations for each of
three  channels  with  five  different noisy levels
(SNR=5,10,1520 and = 25db) are performed with 1000
randomly generated transmitted symbols, and the results are
averaged. The three algorithms, GA, simplex GA and
proposed GASA, have been implemented in a batch way in
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order to obtain an accurate comparison among them. The
averaged fitness functions in successive generations with 25db
are shown in Figs. 2-4 for each of the three channels. It is
observed that the proposed GASA converges with the highest
speed because of its diversity of annealing schedules as
mentioned in the previous section. Fig. 5 shows the averaged
convergence speed (generation no.) for simplex GA and
GASA to reach within a 10% difference of the fitness
function driven by optimal channel output states (conventional
GA does not reach within 100 generations).

s — GASA
g oo Simplex GA
g - GA
§ -~ Optimal value
2
W
-5 -
-7 -
-8 T T y y 0

20 40 80 80 160
Generstion no.

Fig. 2. Averaged fitness functions in successive 100
generations for channel 1.

s —— GASA
§ e Simplex GA
s . GA
2 ~-—= Optimal value
3
5
[
o5
- v T y y 0

20 40 60 80 100
Generation no.

Fig. 3. Averaged fitness functions in successive 100
generations for channel 2.

8 3
§ --------- Simplex GA
2 4 o
§ e Optima! value
5 5
Y8
-3 -4
-7
-8 T ‘ iy ) 0

20 40 &0 80 100
Generation no,

Fig. 4. Averaged fitness functions in successive 100
generations for channel 3.

N GASA
i ] Simplex GA

Generation no.

2
Channel

Fig. 5. Averaged generation no. to reach within a 10%
difference of optimal fitness function.

We also measure the normalized root mean squared errors
(NRMSE) for the estimation of channel output states, defined
by equation (10), and they are shown in Figs. 6-8. GASA
presents the lowest NRMSE over all of the SNR ranges, and
it means that the proposed hybrid genetic algorithm is a very
effective way to find optimal output states for nonlinear
channel blind equalization. A sample of 1000 received
symbols under 5db SNR for channel 1 and their desired
channel states constructed from the estimated channel output
states by GASA is shown in Fig. 9.

_ 1_%_1_"' 2
NRMSE=—~ w2 | a2 | (10)

where g is the dataset of optimal channel output states, @
is the dataset of estimated channel output states, and m is the
number of simulations performed(m=10). Finally, the bit error
rates (BER) are checked by a conventional Bayesian equalizer
as mentioned in section 2, with the desired channel states
constructed from the estimated channel output states. They are
summarized in Table 3. It is shown that the BER with the
estimated channel output states by GASA is almost same as
the one with the optimal output states for all of three
channels.

0.8 4

Log, (NRMSE)

Fig. 6. NRMSE for channel 1.
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Fig. 8. NRMSE for channel 3.

received symbels under 5db SNR optimai(circie{+1),square(-1)) & by GASA(x)
3

2 o o
1
" 2 0o
& [}
> ° <}
E]
ST}
-2
3
-3 -2 -1 ] 1 2 3
y(k)

Fig. 9. A sample of received symbols for channel 1 and their
desired channel states by GASA.

Table 3. Averaged BER(no. of errors/no. of transmitted

symbols) for channel 1 to 3.

Estimation] with optimal Simplex
SNR state GASA GA GA
5 db 0.0797 0.0815 | 00824 | 0.0816
10 do | 0.0120 0.0120 | 00128 | 0.0136
Chal’me' 15 db 0 0 0 0.0003
20 db 0 0 0 0
25 db 0 0 0 0
5 db 0.1515 0.1528 | 0.1557 | 0.1561
10 db | 0.0480 0.0484 | 0.0484 | 0.0490
Chaz"“e' 15db | 0.0032 0.0034 | 0.0034 | 0.0039
20 db 0 0 0 0
35 db 0 0 0 0
5 db 0.1091 0.1095 | 0.1109 | 0.1113
10 db | 0.0284 0.0283 | 0.0283 | 0.0288
Cha;"e' 15 db | 0.0008 0.0008 | 0.0008 | 0.0008
20 db 0 0 0 0
25 db 0 0 0 0
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6. Conclusion

In this paper, a new genetic algorithm merged with SA
(GASA) is presented for nonlinear channel blind equalization.
The complex modeling of an unknown nonlinear channel
becomes unnecessary by constructing the desired channel
states directly from the estimated channel output states. The
proposed GASA with the Bayesian likelihood as the fitness
function successively estimates the channel output states with
relatively high speed and accuracy. Its superiority to
conventional GA and hybrid simplex GA makes the
implementation of a nonlinear channel Bayesian equalizer
based on GASA feasible. For further research, more complex

optimization environments such as those with high
dimensional channels and equalizer orders should be
considered.
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