• Title/Summary/Keyword: Design-dependent load

Search Result 184, Processing Time 0.021 seconds

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

Analytical Prediction of Bearing Life and Load Distribution for Plugin HEV (플러그인 HEV용 베어링 수명 및 응력분포의 분석예측)

  • Zhang, Qi;Kang, Jae-Hwa;Yun, Gi-Baek;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • The transportation is almost dependent on a single fuel petroleum with transportation energy dilemma. Hybrid Electric Vehicle(HEV) technology holds more advantages on efficiency improvements for petroleum consumption at the transportation. And bearing is recognized as the important component of gearbox. Gearboxes for HEV transmission have been ensured the highest reliability over some years in withstanding high dynamic loads. At the same time, the demands of lightweight design and cost minimization are required by thought-out design, high-quality material, superior production quality and maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze bearing rating life methods between standard and different bearing companies with calculation methods for modification factors. In this paper, the influence of life time of bearings will be pointed out. Bearing contact stress and load stress distribution of HEV gearbox are obtained and compared with Romaxdesigner and BearinX. And the unequal wear of the left bearing for the gearbox intermediate shaft is investigated between simulation and test.

Analytical Prediction of Bearing Life and Load Distribution for Plugin HEV (플러그인 HEV용 베어링 수명 및 응력분포의 분석예측)

  • Zhang, Qi;Kang, Jae-Hwa;Yun, Gi-Baek;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.25-30
    • /
    • 2012
  • The transportation is almost dependent on a single fuel petroleum with transportation energy dilemma. Hybrid Electric Vehicle(HEV) technology holds more advantages on efficiency improvements for petroleum consumption at the transportation. And bearing is recognized as the important component of gearbox. Gearboxes for HEV transmission have been ensured the highest reliability over some years in withstanding high dynamic loads. At the same time, the demands of lightweight design and cost minimization are required by thought-out design, high-quality material, superior production quality and maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze bearing rating life methods between standard and different bearing companies with calculation methods for modification factors. In this paper, the influence of life time of bearings will be pointed out. Bearing contact stress and load stress distribution of HEV gearbox are obtained and compared with Romaxdesigner and BearinX. And the unequal wear of the left bearing for the gearbox intermediate shaft is investigated between simulation and test.

Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties

  • Kar, Vishesh R.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.205-221
    • /
    • 2016
  • In this article, the buckling responses of functionally graded curved (spherical, cylindrical, hyperbolic and elliptical) shell panels under elevated temperature load are investigated numerically using finite element steps. The effective material properties of the functionally graded shell panel are evaluated using Voigt's micromechanical model through the power-law distribution with and without temperature dependent properties. The mathematical model is developed using the higher-order shear deformation theory in conjunction with Green-Lagrange type nonlinear strain to consider large geometrical distortion under thermal load. The efficacy of the proposed model has been checked and the effects of various geometrical and material parameters on the buckling load are analysed in details.

Effect of Design Shape on Fatigue Life of Plug Welded Joint (플러그 용접이음부의 피로수명에 미치는 설계형상의 영향)

  • 임재규;이중삼;서도원
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.29-35
    • /
    • 1999
  • This study was intended to use for the fatigue test in real structures and offer basic data for optimum welding structure design. To this purpose, we obserded the effect of the size and distance of plug welding hole on the static strength and fatigue life of welding structure under the shear/bending load for the improvement of fatigue life of plug welding joint between S/MBR and C/MBR in the lower structure of large bus. The result below is shown through this study. 1) Static and fatigue strength are strongly influenced by the direction of plug weld hole distributed. 2) Distances and diameters of the distributed holes are little dependent on the static strengths 3) In case of the directions of the distributed plug weld holes are vertical to the loading pin, fatigue life is dependent on distance of the distributed hole. 4) In case of the directions of the distributed plug weld holes are parallel to the loading pin, fatigue life is dependent on distance of the hole diameter.

  • PDF

Software Pipeline-Based Partitioning Method with Trade-Off between Workload Balance and Communication Optimization

  • Huang, Kai;Xiu, Siwen;Yu, Min;Zhang, Xiaomeng;Yan, Rongjie;Yan, Xiaolang;Liu, Zhili
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.562-572
    • /
    • 2015
  • For a multiprocessor System-on-Chip (MPSoC) to achieve high performance via parallelism, we must consider how to partition a given application into different components and map the components onto multiple processors. In this paper, we propose a software pipeline-based partitioning method with cyclic dependent task management and communication optimization. During task partitioning, simultaneously considering computation load balance and communication optimization can cause interference, which leads to performance loss. To address this issue, we formulate their constraints and apply an integer linear programming approach to find an optimal partitioning result - one that requires a trade-off between these two factors. Experimental results on a reconfigurable MPSoC platform demonstrate the effectiveness of the proposed method, with 20% to 40% performance improvements compared to a traditional software pipeline-based partitioning method.

Multi-MW Class Wind Turbine Blade Design Part I : Aero-Structure Design and Integrated Load Analysis (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part I : 공력-구조 설계 및 통합하중해석)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.289-309
    • /
    • 2014
  • A rotor blade is an important device that converts kinetic energy of wind into mechanical energy. Rotor blades affect the power performance, energy conversion efficiency, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. This study examined the general blade design procedure for a wind turbine system and aero-structure design results for a 2-MW class wind turbine blade (KR40.1b). As suggested above, a rotor blade cannot be designed independently, because its ultimate and fatigue loads are highly dependent on system operating conditions. Thus, a reference 2-MW wind turbine system was also developed for the system integrated load calculations. All calculations were performed in accordance with IEC 61400-1 and the KR guidelines for wind turbines.

High Temperature Structural Integrity Evaluation Method and Application Studies by ASME-NH for the Next Generation Reactor Design

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2061-2078
    • /
    • 2006
  • The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500$^{\circ}C$ and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated.

Determination of Optimal Design Level for the Semiconductor Polishing Process by Taguchi Method (다구찌 기법을 활용한 반도체 연마 공정의 최적 설계수준 결정)

  • Sim, Hyun Su;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.2
    • /
    • pp.293-306
    • /
    • 2017
  • Purpose: In this study, an optimal design level of influencing factors on semiconductor polishing process was determined to minimize flexion of both sides on wafers. Methods: First, significant interactions are determined by the stepwise regression method. ANOVA analysis on SN ratio and mean of dependent variable are performed to draw mean adjustment factors. In addition, the optimal levels of mean adjustment factors are decided by comparing means of each level of mean adjustment factors. Results: As a result of ANOVA, a mean adjustment factor was determined as a width of formed flexion on the plate. The mean of the difference has the nearest to 0 in the case when the width of formed flexion has level 2 (4mm). Conclusion: Optimal design levels of semiconductor polishing process are determined as follows; (i) load applied to the wafer carrier has a level 1 (3psi), (ii) load applied to the wafer has a level 1(3psi), (iii) the amount of slurry supplied during polishing has a level 3 (300 co/min), (iv) the width of formed flexion on the plate has level 2 (4mm).

Design of Composite Laminates Using Enumeration Method (나열법을 이용한 복합재 적층판 설계)

  • Joung, Chanwoo;Bae, Il-Joon;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.288-295
    • /
    • 2020
  • Fiber-reinforced composite laminates have high specific stiffness and strength and are expected to be useful for weight reduction in weight-sensitive industries, such as automotive and aerospace. However, designing composite laminates is often dependent on designer's experience and intuition because of difficulties in determining the number of plies and stacking sequence, which tends to lead to over-design. In this study, optimal design of composite laminates was performed to minimize weight, while withstanding the given load. Based on the enumeration method, all combinations of stacking sequence satisfying the design guideline for composite laminates were considered. Composite laminates were discretized into panels. Optimal number of plies and stacking sequence for each panel were determined considering local load on each panel and contiguity across adjacent panels. Failure index from Tsai-Wu criteria was optimized for strength and buckling analysis was performed for compressive load. Stacking angles of 0, ±45 and 90° were used.