
562 Kai Huang et al. © 2015 ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0502

For a multiprocessor System-on-Chip (MPSoC) to
achieve high performance via parallelism, we must
consider how to partition a given application into different
components and map the components onto multiple
processors. In this paper, we propose a software pipeline–
based partitioning method with cyclic dependent task
management and communication optimization. During
task partitioning, simultaneously considering computation
load balance and communication optimization can cause
interference, which leads to performance loss. To address
this issue, we formulate their constraints and apply an
integer linear programming approach to find an optimal
partitioning result — one that requires a trade-off
between these two factors. Experimental results on a
reconfigurable MPSoC platform demonstrate the
effectiveness of the proposed method, with 20% to 40%
performance improvements compared to a traditional
software pipeline–based partitioning method.

Keywords: Software pipeline, partition, cyclic
dependent task management, communication
optimization.

Manuscript received Apr. 22, 2014; revised Dec. 24, 2015; accepted Jan. 2, 2015.
This work was supported by the National Foundation of China (61100074) and the Science

Foundation of Zhejiang Province, China (LY14F020026).
 Kai Huang (huangk@vlsi.zju.edu.cn), Min Yu (yumin@vlsi.zju.edu.cn), Xiaomeng Zhang

(zhangxm@vlsi.zju.edu.cn), and Xiaolang Yan (yan@vlsi.zju.edu.cn) are with the Institute of
VLSI Design, Zhejiang University, China.

Siwen Xiu (corresponding author, xiusiwen@cjlu.edu.cn) is with the College of Optical and
Electronic Technology, China Jiliang University, China.

Rongjie Yan (yrj@ios.ac.cn) is with the Institute of Software, Chinese Academy of Sciences,
Bejing, China.

Zhili Liu (zhili_liu@c-sky.com) is with C-Sky Microsystem Co., Ltd., Zhejiang, China.

I. Introduction

Recent increasing demand for higher-performing
embedded systems is helping to promote the use of
multiprocessor System-on-Chips (MPSoCs) [1]. Given an
application, one key issue of generating efficient parallel
codes for a target MPSoC platform is how to partition the
given application into different components and map the
components onto different processors with the best
performance. Software pipeline, a prevalent parallelization
method, is an effective solution to address this problem. For
software programs, pipelining introduces a higher degree of
parallelism, which in turn, increases a program’s throughput.
For hardware processors, pipelined stages make it easy to
partition and map decomposed programs onto different
components to achieve better hardware utilization [1].

However, the increasing complexity of applications and
hardware architectures challenges the efficiency of the software
pipeline method. To explore the parallelism between a software
application and a hardware architecture, the software pipeline
method should take into consideration the following two
issues:
■ How to keep balanced workloads while maintaining task

dependency. High parallelism calls for a balanced pipeline,
whereby each stage has almost the same execution time and
linear stage dependency. However, most existing applications
involving complicated cyclic task dependencies may
constrain the distribution of tasks among processors, which
makes it harder to keep balanced workloads among pipelined
stages without destroying task dependencies.

Software Pipeline–Based Partitioning Method with
Trade-Off between Workload Balance and

Communication Optimization

 Kai Huang, Siwen Xiu, Min Yu, Xiaomeng Zhang, Rongjie Yan, Xiaolang Yan, and Zhili Liu

ETRI Journal, Volume 37, Number 3, June 2015 Kai Huang et al. 563
http://dx.doi.org/10.4218/etrij.15.0114.0502

■ How to minimize communication overheads. With the
increasing complexity of MPSoC, inter-stage communication
is becoming an ineligible factor for software pipeline.
Decomposing a task into finer-grained subtasks results in
higher overhead in synchronizing subtasks, with lower
system performance and scalability [2]. Thus, how to reduce
the communication overhead between software pipeline
stages should also be considered.
In some cases, the aforementioned issues may well interfere

with each other, making software pipeline construction even
harder. Communication pipeline [3] is a communication
optimization technique that can significantly hide
communication transfer times between processors. But, its
additional latency may impact on the handling of cyclic
dependent tasks and cause nonadjustable imbalanced
workloads. Therefore, we have to maintain a trade-off between
load balance and communication optimization for better
parallelism.

In this paper, we propose a software pipeline–based
partitioning method with cyclic dependent task management
and communication optimization. The interference between
communication optimizations and workload balance is well
addressed for better performance. We first analyze how to
partition general pipeline stages for cyclic dependent tasks.
Next, we quantify the inter-stage communication pipeline
optimization on a software pipeline partition, and then we
formulate the constraints of communication optimization in our
integer linear programming (ILP) formulations for a better
partitioning result. Finally, each pipeline stage is mapped to one
processor.

The main contributions of this paper are summarized as
follows. First, the proposed method combines both software
pipeline and communication pipeline techniques to balance
computation load and reduce communication overhead. For
the first time, a cyclic constraint for a general software pipeline
technique is investigated and two kinds of pipelines are
combined and executed well. Second, the software pipeline–
based partitioning method is integrated into a Simulink-based
multithreaded code generation flow for MPSoC, which
implements the automatic generation of efficient parallel code
from sequential applications.

The rest of the paper is organized as follows. Section II gives
some related works. Section III describes the background of
the Simulink model, software pipeline, and communication
pipeline. Section IV introduces the proposed partitioning
method. Section V shows the feasibility of the implementation
of our method. Section VI features discussions of our
experiments and results. Section VII concludes the paper and
highlights directions for future work.

II. Related Work

The current related literature offers plenty of methods on
code generation from high-level models. Most methods are
based on functional modeling, such as Khan process networks
[4], dataflow [5], UML [6], and Simulink [7]. As a prevalent
environment for modeling and simulating complex systems at
an algorithmic level of abstraction, Simulink has been widely
used, such as in Real-Time Workshop® [8], dSpace [9], and
many other code generators [10]–[11]. Light and Efficient
Simulink Compiler for Embedded Application (LESCEA) [12]
is an automatic code generation tool with memory-oriented
optimization techniques. Nevertheless, the partitioning of an
application in LESCEA is conducted manually, which requires
expertise and significantly affects the performance of the
generated codes.

The high performance requirements of embedded
applications necessitate the need to realize efficient partitioning
methods. Much literature can be found to tackle this problem.
For example, search-based approaches are extensively used,
such as simulated annealing in [13], ILP in [14], which
can achieve optimal or near-optimal solutions. Further,
performance metrics, such as communication latency, memory,
energy consumption, and so on, are optimized along with
partitioning methods (see [15] for more details).

As a prevalent parallelization method, software pipeline is
widely studied. Cyclic task dependency is an important factor
that limits the performance of a software pipeline. In [16]–[18],
all of the three mentioned approaches exploit the retiming
technique to transform intra-iteration task dependency into
inter-iteration task dependency to implement a task-level
coarse-grained software pipeline. However, communication is
not fully considered in these works. In [19], the authors
construct a software pipeline for streaming applications, where
communication is optimized through laying buffers in
communication channels. As a result, the sending and receiving
of data between different processors can be operated

independently to avoid synchronization overhead, which is
similar to our work. In [20], the partitioned streaming
application is assigned to pipeline stages in such a way that all
communication (DMA) is maximally overlapped with
computation on the cores. Nevertheless, the assumption that
the whole streaming application model has no feedback loops
limits the utilization of the software pipeline in real-life
applications.

ILP is a well-known approach for the ability to calculate
optimal results for partitioning problems. It is also applied to
generate software pipelines. ILP is exploited in [20] to
determine the assignment of synchronous dataflow actors to
pipeline stages corresponding to processors to minimize the

564 Kai Huang et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0502

maximal load of any processor. In [21], an ILP formulation is
utilized to search a smaller design space and find an
appropriate configuration for ASIPs, with the objective of
minimizing the system area and satisfying system runtime
constraints in pipelined processors. An ILP-based mapping
approach is presented in [22] to minimize the most expensive
path in a pipeline under the constraints of program dependency
and the maximal number of concurrently executed components.
In summary, the aforementioned methods do not significantly
consider the discussed two factors (cyclic task dependency and
communication overhead) in software pipeline.

Previous works have implemented software pipeline in
various ways and integrated certain optimizations on cyclic
task dependencies or communications. In this paper, we
consider cyclic task dependency and communication
overheads to achieve a trade-off between load balance and
communication optimization. We integrate the techniques
(cyclic task dependency management and communication
optimization) handling the two problems into our software
pipeline partitions, and we utilize ILP formulations to quantify
and combine the above two factors to obtain higher performance.

III. Background

1. Simulink Model

This work is based on the concepts of Simulink models,
which have been introduced in previous works [12], [23]–[24].
A Simulink model represents the functionality of a target
system with software functions and hardware architectures. It
has the following three types of basic components:
■ A Simulink block represents a function that takes inputs and

produces certain outputs. Examples include user-defined (S-
function), discrete delay, and pre-defined blocks such as
mathematical operations. For ease of discussion, we mainly
focus on communication (sending and receiving) blocks (see
the gray circles in Fig. 1) and functional blocks (see the white
circles in Fig. 1).

■ A Simulink link is a one-to-many link, which connects one
output port of a block to one or more input ports from
corresponding blocks, and it represents a dependency
relation between different blocks. A link from block F0 to
block F1 means F1 depends on F0, denoted by F0→F1. We
name a Simulink link starting from a sending block S and
ending with a receiving block R (from different processors)
as a communication vector, which we denote by S→R.

■ A Simulink subsystem can contain blocks, links, and other
subsystems to represent hierarchical composition and
conditionals such as for-loop iteration and if-then-else
structures.

Fig. 1. Hierarchical structure of MPSoC Simulink model.

MPSoCSystem layer

CPU1 SS

F0

F2

m0

m3

S0

R1

Subsystem layer

Interconnection

R0

S1

F1

m1

m2

CPU0 SS

A Simulink model is specified as a two-layered hierarchical
structure, as illustrated in Fig. 1. The system layer describes a
system architecture that is made up of CPU subsystems and
inter-subsystem communication channels. The subsystem layer
describes a CPU subsystem architecture that includes a set of
partitioned applications made up of Simulink blocks and links
and intra-subsystem communication channels.

2. Software Pipeline

Software pipeline is a prevalent parallelization method,
where the output of each stage is the input of the next so that a
software application works in a decomposed and pipelined way.
An n-stage software pipeline is shown in Fig. 2. To analyze
timing relationships, we assume that applications are executed
in cycles [12], [24] (a cycle means that from some point
partitioned applications on all processors have been executed
once). Thus, at the same time, from Fig. 2, we can say that s0 is
executed at cycle i, s1 at cycle (i – 1), and so on. In a traditional
software pipeline, a given stage is one cycle later than the
previous stage, which serves to definer a stage-interval latency
of one cycle. Typically, software pipelines are linear and one-
directional, which means data flows in one certain direction
without cyclic task dependencies in one execution cycle.

3. Communication Pipeline

A communication pipeline can be used to hide inter-
processor communication transfer overhead. It has the
advantages of direct memory access (DMA), which can
autonomously execute data transfer without intervention of
processors to achieve a parallelization of computation and
communication. Derived from the store-and-forward pipeline,

Fig. 2. Traditional software pipeline.

s0 s1 sn–2 sn–1Stage:

Current cycle: cycle (i) cycle (i–1) ··· cycle (i–(n–2)) cycle (i–(n–1))

ETRI Journal, Volume 37, Number 3, June 2015 Kai Huang et al. 565
http://dx.doi.org/10.4218/etrij.15.0114.0502

Fig. 3. Codes for communication pipeline: (a) model with DMA,
(b) code for P1 w/o CP, and (c) code for P1 with CP.

P1 P2

R0 S2

m0
m3

F1 F2

m1 m2

S1 R1

D
M

A

(a) (b) (c)

P1 (){
 while (1){
 R0 (m0);
 F1 (m0, m1);
 S1 (m1);
 }
}

P1 (){
 clk=0;
 nb_R0 (m0[clk%2]);
 while (1){
 nb_R0 (m0[(clk+1)%2]);
 F1 (m0[clk%2], m1);
 S1(m1);
 clk++;
 }
}

Fig. 4. Comparison of execution sequence for CPU1 in Fig. 3: (a)
execution sequence w/o CP and (b) execution sequence
with CP.

DMA

CPU1

DMA

CPU1

Initiate DMA
data transfer

Wait for
receiving data

R0 (i) R0 (i+1)

S1 (i)
Wait for

receiving data S1 (i+1)

F1 (i) F1 (i+1)

R0 (i+1) R0 (i+2)

S1 (i) S1 (i+1)
Initiate DMA
data transfer

F1 (i) F1 (i+1)

(a)

(b) t

t

data required for a computation in the current cycle is received
one cycle in advance and buffered in extra memory; therefore,
functional blocks can use the buffered data directly in the
current cycle. In this way, no more waiting time for receiving
data is required and latency between receiving data and
computation can be reduced.

Figure 3(a) shows an example of a communication pipeline.
In this figure, there is a chain of processors. We denote F to be
a function block waiting for some input from receiving block
R and outputting functioning results to sending block S in
processor P. In Fig. 4, the execution sequence demonstrates the
idea of parallelism. Without a communication pipeline, F1 has
to wait for R0 in the same cycle in Fig. 4(a). However, in
Fig. 4(b), R0, F1, and S1 of different cycles are executed in
parallel with the help of a communication pipeline, and the
waiting time for receiving data can then be saved.

IV. Software Pipeline Partitioning Method

In this section, we present our proposed software pipeline–
based partitioning method. In the first two subsections, we first
introduce the rules to address the cyclic dependency between
tasks and communication overheads. Then, in the third

Fig. 5. Cyclic constraint analysis.

Stage:

Cycle
(i)

Cycle
(i–t1)

Cycle
(i–t1–t2–…–tm–1)

Current cycle: ... Cycle
(i–t1–t2–…–tm)

Z–k

S0 Sn+1 Sn+m–1 Sn+m

subsection, we integrate these rules into our ILP formulations
to obtain optimal partitioning results.

1. Cyclic Dependent Task Management

When partitioning an application into several pipeline stages,
the tasks dependencies, also known as the topologies of task
graphs, should be determined. For complicated applications,
task graphs may consist of many cyclic task dependencies,
which makes it difficult to partition tasks to processors since
only linear dependencies are allowed between stages. Thus, to
meet the linear demand, a cyclic constraint should be set first
before any other operations.

To avoid deadlock, a feedback edge in a task graph indicates
Z–k delays between tasks that are pre-defined by a Simulink
model, as shown in Fig. 5. A general solution to breaking the
loops as well as maintaining data dependency is retiming [25],
which has been used in traditional software pipelines. However,
not all software pipelines uniformly have a one-cycle stage
interval latency. In some particular cases, a stage of a software
pipeline may be more than one cycle later than the stage that
precedes it, and some stages may have slightly different cycle
stage intervals. As long as the application is executed for
enough cycles (far more than the number of pipeline stages and
stage interval latency), the performance of the software
pipeline is not affected. Therefore, we analyze a cyclic
constraint that will suit general software pipelines.

In a cyclic task dependency situation, as shown in Fig. 5,
partitioning a software pipeline should satisfy the following
constraint: In theory, the sum of the stage interval latencies
between the stages directly connected with the feedback edge
should be less than the minimum number of the delayed cycles
of the feedback edge. We take Fig. 5 as an example to illustrate
the constraint. Suppose that the target is to get m pipeline cuts
on the Z–k feedback edge starting from the last stage sn+m and
ending with the first stage sn. Meanwhile, the stage interval
latency is t1, t2, … , tm from sn to sn+m, respectively. Let us
assume that stage sn is currently processing data of cycle i.
Then, to form the required software pipeline, sn+1 should be
timed so as to process data of cycle (i – t1), sn+2 to cycle (i – t1 –
t2), and so on and so forth until the last stage sn+m to cycle (i –

566 Kai Huang et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0502

t1– t2 – … – tm). Stage sn of cycle i needs to use the data from
sn+m of cycle (i – k), so we should guarantee that data from
cycle (i – k) is ready at present, which means that i – k < i – t1 –

t2 –…– tm. Solving the inequality, we get
1

i
i m

t k
 

 , which is

the mathematical explanation of the cyclic constraint.
Under this cyclic constraint, some feedback edges cannot be

cut into the defined number of pipeline stages. In this case,
tasks directly linked to Z–k are roughly classified into a single
stage. The cyclic dependency constraint can be used in any task
graph; and under this constraint, any feasible pipeline cuts will
not violate the original task dependencies. However, this
constraint limits the places of pipeline cuts, which adds
difficulties on workload balance.

2. Communication Optimization

The large amount of communication caused by a software
pipeline partition can be handled by combining
communication optimization techniques. In this work, we
combine a communication pipeline with a traditional software
pipeline to hide inter-processor communication transfer costs.
To further improve performance, we first quantify the pros and
cons of a communication pipeline, and then we describe the
changes that will occur when combining a communication
pipeline and software pipeline.

A. Quantification

In our background work in this paper, we have introduced
the basic functions of a communication pipeline. From Fig. 4,
we can infer that applying a communication pipeline once can
save the transfer time of a particular communication vector,
which contributes to performance improvements. The transfer
time is proportional to the transfer data size, and it can be
calculated.

On the other hand, a communication pipeline introduces
delay, which may degrade performance. Reconsider the
example in Fig. 3; we can observe from Fig. 6(b) that with P2
applied to the communication pipeline, R1 is receiving data of
cycle i while F2 and S2 are processing data of cycle (i – 1).
Without the communication pipeline, in Fig. 6(a), R1, F2, and
S2 are all processing data of cycle i. Thus, in Fig. 6(b), if we
want to reach the point where S2 sends data of cycle i, we have
to wait for another cycle to be completed, which means that the
communication pipeline does result in a cycle time delay. The
cycle time can be obtained by profiling before executing the
application.

B. Combination

A communication pipeline can only be applied to an inter-

Fig. 6. Comparison of execution sequences: (a) execution sequence
without CP and (b) execution sequence with CP.

R0 (i)
F1 (i)
S1 (i)

Execution
sequence

Execution
sequence

R1 (i)
F2 (i)
S2 (i)

@P1 @P2 @P1 @P2

R0 (i)
F1 (i)
S1 (i)

R0 (i)
F2 (i–1)
S2 (i–1)

R1 (i+1)
F2 (i)
S2 (i)

(a) (b)

processor. To take advantage of this characteristic, in our
software pipeline, each stage is eventually mapped to a
processor, and the communication pipeline can then be applied
to inter-stage processors. Moreover, to make it simple and
reasonable, if a communication pipeline is to be applied
between a pair of processors, then we first combine all
communication vectors between the two processors into one
coarse-grained communication vector, and then we use the
communication pipeline on the receiving processor. In this case,
we will intentionally not apply the communication pipeline to
the receiving blocks on feedback edges, although it works in
theory.

The combination of a communication pipeline and software
pipeline brings changes to the traditional software pipeline. For
a traditional software pipeline, a stage should process data one
cycle earlier than its successor. Since a communication pipeline
itself requires one-cycle latency, the one-cycle stage interval
latency is not enough for both the communication pipeline and
the software pipeline. Therefore, if a stage is applied to a
communication pipeline, then there should be two cycles of
stage interval latency between this stage and its predecessor.
We take the example in Fig. 3 to explain the reasons. In this
case, the chain of processors works in a pipeline way. The
following analysis shows a comparison of the cases with and
without a communication pipeline.

a. Without Communication Pipeline
Suppose that P1 is processing data of cycle i, which means

that R0, F1, and S1 are executed sequentially and that they deal
with the data in the same cycle, i. To ensure a software pipeline,
P2 should be processing data of cycle (i – 1), which means R1,
F2, and S2 are at cycle (i – 1), so when the next cycle arrives,
R1 can receive data from S1 and deal with it afterwards. In this
case, the software pipeline has a one-cycle stage interval
latency. However, this will cause a waste of time waiting for
receiving, as shown in Fig. 7(a).

b. With Communication Pipeline
Suppose that P1 is processing data of cycle i, which means

that F1 and S1 are executing serially at cycle i. To buffer received

ETRI Journal, Volume 37, Number 3, June 2015 Kai Huang et al. 567
http://dx.doi.org/10.4218/etrij.15.0114.0502

Fig. 7. Comparison of execution sequences: (a) execution sequence
without CP and (b) execution sequence with CP.

DMA

P1

DMA

P2

DMA

P1

DMA

P2

R0 (i)

F1 (i) F1 (i+1)

R0 (i+1)

R1 (i–1)

S1 (i)

Initiate DMA
data transfer

Wait for
receiving data

Initiate DMA
data transfer

Wait for
receiving data S1 (i+1)

S2 (i)

R1 (i)

S2 (i–1)

F2 (i–1) F2 (i)

(a) t

R0 (i+1) R0 (i+2)

S1 (i+1) S1 (i)

F1 (i+1) F1 (i)

R1 (i–1) R1 (i)

Initiate DMA
data transfer

Initiate DMA
data transfer S2 (i–2) S2 (i–1)

F2 (i–2) F2 (i–1)

(b) t

data beforehand, R0 should be executing data of cycle (i + 1).
Since DMA handles the data transfer, P1 can start the next
cycle of execution immediately, which means that S1 (i), R0 (i
+ 2), and F1 (i + 1) can concurrently execute, since they do not
depend on each other. After S1 finishes sending data of cycle i
on processor P1, R1 receives the data of cycle i on processor
P2. To ensure a communication pipeline is applied to each pair
of processors, while R1 is receiving, F2 from the same
processor P2 should be computing at cycle (i – 1), which
means that P2 is processing data of cycle (i – 1). Therefore,
there is a two-cycle latency between software pipeline stages
with a communication pipeline, as shown in Fig. 7(b).
Comparing the two execution sequences in Fig. 7, the waiting
time can be reduced after applying a communication pipeline.

3. ILP Formulations of Pipeline Partition

The techniques on cyclic dependent task management and
communication optimization are further encoded in the
following ILP formulations, to achieve a trade-off between the
given constraints.

A. Constants and Variables in ILP Formulation

We define the following constraints and variables for use
with our ILP formulations:
■ n — the number of tasks.
■ m — the number of stages.
■ T — set of tasks T = {T1, T2, … , Tn}.
■ S — set of stages S = {S1, S2, …, Sm}.
■ ti — execution time of task Ti.
■ Ttrans,ij — the data transfer time between task Ti and task Tj.

■ CPi is a Boolean variable. It is equal to “1” if a
communication pipeline is applied to the receiving blocks on
stage i; otherwise, it is equal to “0.”

■ Dij is a Boolean variable. It is equal to “1” if task Tj depends
on task Ti without delayed feedback; otherwise, it is equal to
“0.”

■ Zij is a variable indicating the number of delayed cycles
between task Ti and task Tj if task Tj depends on task Ti. If Tj
does not depend on task Ti, then it is equal to infinity.

■ Aij is a Boolean variable. It is equal to “1” if task Ti is assigned
to stage Sj; otherwise, it is equal to “0.”

B. Objective Function

A high-performance software pipeline can be achieved by
maximizing performance improvements (PM) and minimizing
workload variance (WV). Therefore, the objective function is
as follows, where weights k0 and k1 can be tuned by the user to
control the trade-off between communication optimization and
workload balance:

0 1max(PM WV),k k   (1)

where

' ' ' trans, ' '
' |S| , ' |T|,

, ' |S|

PM CP ,ij i j ii ii j
j i i

j j

A A D T
 



    
  
  

  (2)

2

|S| |T| |T|

1
WV () .i ij i

j i i

t A t
m  

    (3)

Here, PM represents the PM brought by a communication
pipeline. As analyzed in Section IV-2-A, a communication
pipeline can save the transfer time of all communication
vectors between a pair of processors, so PM is the sum of the
saved transfer times of all the communication pipelines. In the
objective function, we aim to maximize PM.

The degree of workload balance in the software pipeline is
represented by WV. It calculates the variance of the stage
execution times, which is defined as the execution time of each
stage deviated from the ideal balanced time (mean time). The
less WV is, the more balanced the software pipeline is. Thus, in
the objective function, we try to minimize WV.

C. Constraints

■ Each task must be mapped to a single stage.

|S|

1.ij
j

A


 (4)

■ For any two tasks Ti and Ti', a direct backward data
dependency does not exist. That is, if Ti is mapped to stage Sj,
then Ti' is mapped to stage Sj', and if Ti' depends on Ti, then j'
is no less than j.

568 Kai Huang et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0502

' ' '(3) ' 0,ij i j jjA A D M j j       (5)

where M indicates an integer large enough to guarantee that
the inequality is satisfied.

■ Using the cyclic constraint discussed above, if feedback
edges with delay units exist between a pair of stages, then we
should make sure the sum of the stage interval latencies
between is smaller than the number of delay units.
Considering a communication pipeline, the stage interval
latency here consists of software pipeline latency as well as
communication pipeline latency.

' '
'

(2) ' CP .ii ij ij k
j k j

Z A A M j j
 

        (6)

V. Implementation

The proposed techniques have been implemented based on
the LESCEA multithreaded code generator of the Simulink-
based MPSoC Design Platform [12], [26]–[27]. The
multithreaded code generator takes a Simulink model as an
input and generates a set of software thread codes. It then
builds software stacks that are executable on the target
hardware architecture. Figure 8 shows the global flow of the
code generation that produces an efficient thread code and a
main C code for each CPU subsystem. The Simulink blocks

Fig. 8. Design flow of automatic code generation tools.

CAAM model

Processor mapping

HdS adaptation

Simulink model

Main code0

CPU0-SW

Thread code generation

Thread1

Thread0

Hardware-
dependent
software
library

Software pipeline partition
Cyclic task dependency

management & communication
optimization

T0

T1

T0

main

HdS

CPU1-SW

T0

main

HdS

Main code1
int main
{
……
……
}

int main
{
……
……
}

within a CPU subsystem are scheduled statically according to
data dependency. Notice that in this work, we consider all
blocks and links on each processor in one thread. The whole
design flow of automatic code generation consists of the
following three steps:
1) Software pipeline partitioning. An application represented

by Simulink blocks and links is partitioned into pre-defined
software pipeline stages using an ILP method considering
cyclic dependent tasks and communication optimization,
and then each stage is mapped onto each processor.

2) Thread code generation. A C code is generated for each
thread, which includes memory declarations, a sequence of
function calls corresponding to the invocation order of
blocks, and memory space allocation. Moreover, the
generated code also includes communication primitives for
communications.

3) HdS Adaption. In this step, a main code that is responsible
for creating threads and initializing channels for the target
CPU subsystem and a Makefile that links the thread with
the HdS library for each processor are generated.

VI. Experiments

1. System Emulation Platform

Our experiments adopt a Motion-JPEG decoder and an
H.264 Baseline decoder as a benchmark for the proposed
techniques. Meanwhile, a flexible MPSoC hardware platform
with an efficient interconnection network for scalability is used
as the hardware architecture. As shown in Fig. 9, the hardware
platform consists of several CPU subsystems (n ranges from
two to eight), a memory subsystem, and an interconnection
subsystem. Each CPU subsystem uses a 32-bit high-speed bus
to connect one processor with its local SRAM and a 32-bit
low-speed bus to other local peripherals, such as a timer. The
processor type in the CPU subsystem is configured as a 32-bit
3-stage ultra-low-power RISC CKCore processor [28] without
instruction and data cache. The memory subsystem uses a
64-bit high-speed bus to connect to an off-chip global DDR2
SDRAM. These two subsystems are connected to a distributed
memory server (DMS) interconnection subsystem through a
memory service access point (MSAP) [29]. The DMS acts as a
server and provides the communication and synchronization
services to the subsystems in an MPSoC. Each MSAP delivers
data transfer requests issued by its corresponding subsystem to
other MSAP via the control network. Each MSAP also
exchanges synchronization information, which indicates the
completions of requests handling, with other MSAP via the
control network.

The software platform consists of thread codes, CPU main

ETRI Journal, Volume 37, Number 3, June 2015 Kai Huang et al. 569
http://dx.doi.org/10.4218/etrij.15.0114.0502

Fig. 9. MPSoC hardware platform.

CPU1 PIC LMEM

Peripheral MSAP

Data network

Main

PIC LMEM

Peripheral MSAP

CPU HdS

MSAP

GMEM

DDR2
DRAM

CPU1
subsystem

Interconnection subsystem
DMS

Control network

Thread Thread

32-bit
64-bit

PHY
DDR2 CTRL

64-bit bus
matrix

32-bit bus
matrix

…

32-bit
64-bit

32-bit
64-bit

CPUn

CPUn
subsystem

Mem
subsystem 16-bit

32-bit bus
matrix

Table 1. Experiments integrating different techniques.

Techniques vs. experiments M0 M1 M2 M3

Software pipeline √ √ √ √

Cyclic dependent task management √ √ √

Communication optimization √ √

Trade-off between computation balance and
communication optimization

 √

codes, and an HdS library on each target CPU. The application
model is mapped to the target 4/6/8-CPU hardware platform.
The inter-processor communication channels are allocated, if
not specially noted, with global SDRAM and implemented by
MSAP configuration. The experimental results about time cost
and processor utilization are obtained from FPGA emulation
using 100-frame QVGA MJPEG and 300-frame CIF H.264
bitstream as inputs.

To evaluate the effectiveness of the proposed method, our
experiment is conducted based on an LESCEA code generator,
which implements partitioning manually. There are four sets of
experiments with different combinations of our techniques
over the same application, as illustrated in Table 1. Experiment
M0 includes a basic software pipeline where only workload
balance is considered during partitioning. Experiment M1
takes not only workload balance but also cyclic dependent
task management into account. Experiment M2 adds
communication optimizations to all available inter-processor
communication vectors based on M1. Experiment M3 is the
proposed software pipeline partitioning method. We mainly
compare the performance denoted by the total execution cycles
and processor usage from these experiments.

2. Experimental Results

The Simulink functional model of the MJPEG decoder

Fig. 10. Total cycles of each case in MJPEG experiment.

100

0

20

40

60

80

M0 M1 M2 M3 M0 M1 M2 M3
2-CPU 3-CPU

To
ta

l c
yc

le
s

(M
eg

a)

Fig. 11. Total cycles of each case in H.264 decoder experiment.

0

20

40

60

80

100

120

140

160

To
ta

l e
xe

cu
ti

on
 c

yc
le

s
(M

eg
a)

M0 M1 M2 M3
4-CPU

M0 M1 M2 M3 M0 M1 M2 M3
6-CPU 8-CPU

consists of 7 S-functions, 7 delays, 26 data links, and 4 If-
Action subsystems (IASs). We mapped this model to the target
2-CPU hardware platform with four threads. This abstract
clock synchronous model [23] is built on an 8 × 8 block index
as an abstract clock to represent parallelism and
communication explicitly. The experiments integrating
different techniques are conducted on a 2-CPU and 3-CPU
hardware platform. As shown in Fig. 10, we can find that M1
almost keeps the same performance as M0 because there is no
cyclic-dependent issue in simple MJPEG application. With
communication optimization, the performance is improved
explicitly by almost 9% in the 2-CPU case and 11% in the
3-CPU case. Using techniques in balancing load and
communication in M3 brings an extra 7% improvement over
M2 in the 3-CPU case.

To further analyze the advantage of our techniques, a more
complicated H.264 application is used with more fine-
granularity thread partitioning. The Simulink application model
of the H.264 decoder used in this experiment consists of 83 S-
functions, 24 delays, 286 data links, 43 IASs, 5 For-Iteration
subsystems, and 101 pre-defined Simulink blocks. This model
is built on a 16 × 16 macro block index as an abstract clock
with good granularity to represent parallelism and
communication explicitly. Cyclic topologies in the model are
presented to describe the dependency of neighboring blocks
caused by spatial compensation and a deblocking filter. The
experiments integrating different techniques are conducted on

570 Kai Huang et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0502

4-CPU, 6-CPU, and 8-CPU hardware platforms.
The time cost is presented by the number of cycles in Fig. 11.

Comparing to M0, where, except for the workload balance,
neither cyclic dependent tasks nor communication overhead
is taken into consideration, we have achieved overall PMs on
all of the 4/6/8 CPUs after applying M3. For a 4-CPU platform,
an 18.8% improvement is obtained. This increases to 31.6%
and 40.5% for the 6-CPU and 8-CPU platforms, respectively.

Compared to M0, M1 obtains PMs after considering cyclic
dependent tasks. In fact, focusing on workload balance and
ignoring cyclic dependences between tasks in M0 may lead to
an unreasonable software pipeline partition, where part of the
tasks can not be pipelined to improve performance. This
comparison proves the necessity of the cyclic dependent task
management in a software pipeline.

Compared to M0 and M1, M2 addresses the two challenges
discussed above. However, it does not consider the relationship
between communication overhead and cyclic dependent tasks.
As a result, with the increasing number of processors, the side
effects of the communication pipeline goes beyond the benefits
it brings, causing around 9% worse performance compared to
M1 (4/6-CPU), which indicates that the trade-off between
communication optimizations and load balance should be
taken into account when designing an efficient software pipeline.

To analyze the reason for performance improvements and
degradations more clearly, a processor state can be divided
into three categories in our experiment — communication
(comm) state, idle state, and computation (comp) state. The
communication state consists of a communication setup state
and a transfer state; and the idle state includes all the
synchronization waiting states, all of which represent
communication overhead and all of which need to be reduced.
The computation state represents the real processor usage state.
Here, we use the average percentage of processor usage among
multiple processors in every experiment set to evaluate the
resource utilization of the whole system.

In Fig. 12, the average processor usage percentages of
4/6/8-CPU are demonstrated. Although the processor usage
percentage decreases from 77.2% to 68.8% as the number of
processors grows, the total execution cycles are reduced
significantly with the proposed method, as we can see
in Fig. 11. Moreover, communication overhead and
synchronization waiting time are cut down effectively in each
of the 4/6/8-CPU cases. In addition, Fig. 12 certifies our
explanations for the processor usage decrease in M2 that
though a communication pipeline can reduce communication
overheads significantly, the over-application of it adds more
limits to the cyclic dependent task management and affects the
workload balance. Imbalanced workloads lead to more idle
time among processors and degrade the system performance.

Fig. 12. Processor usage percentage.

0

20

40

60

80

100

P
ro

ce
ss

or
 u

sa
ge

 p
er

ce
nt

ag
e

(%
)

IDLE

COMM

COMP

M0 M1 M2 M3

4-CPU

M0 M1 M2 M3 M0 M1 M2 M3

6-CPU 8-CPU

Fig. 13. Workload of each processor in 4/8-CPU cases: (a) 4-CPU
case and (b) 8-CPU case.

0

20

40

60

80

100

120

0

10

20

30

40

50

60

W
or

kl
oa

d
of

 e
ac

h
pr

oc
es

so
r

(M

eg
a

cy
cl

es
)

W
or

kl
oa

d
of

 e
ac

h
pr

oc
es

so
r

(M
eg

a
cy

cl
es

)

P0 P1 P2 P3
M0

P0 P1 P2 P3
M3

(a)

P0 P1 P2 P3 P4 P5 P6 P7 P0 P1 P2 P3 P4 P5 P6 P7
M0 M3

(b)

Figure 13 gives a comparison between M0 and M3 of the
workloads of each processor under the 4-CPU and 8-CPU
cases. In both cases, M3 is not as balanced as M0, which
is caused by the ILP trade-off between workload balance
and communication optimizations. If the performance
improvement brought by a balanced partition is less than that
brought by the communication pipeline under a less balanced
partition, then we will sacrifice some degree of balanced
workloads for better performance. The comparison indicates
that our software pipeline–based partitioning method is
flexible at adjusting workload balance and communication

ETRI Journal, Volume 37, Number 3, June 2015 Kai Huang et al. 571
http://dx.doi.org/10.4218/etrij.15.0114.0502

optimizations to obtain best performance.
The whole experimental results have illustrated that the

proposed software pipeline–based partitioning method
considering cyclic dependent task management and
communication optimization as well as their trade-off can
improve system performance effectively in MPSoC.

VII. Conclusion

To improve the performance of MPSoC applications, we
have proposed techniques to address the challenges of cyclic
dependency between tasks and communication optimization in
software pipeline–based partitioning. The most important
contribution is a novel software pipeline partitioning method
integrating cyclic dependent task management and
communication optimizations as well as maintaining the
trade-off between workload balance and communication
optimizations. The experimental results demonstrate the
effectiveness of our method. As one of our future works, we
will introduce techniques to improve the processor utilization
in our design. One possibility is to apply buffer allocation
techniques to obtain further improvement in system
performance. Furthermore, we will also explore this work on
other kinds of applications.

References

[1] C. Bienia and K. Li, “Characteristics of Workloads Using the

Pipeline Programming Model,” Comput. Archit., vol. 6161, 2012,

pp. 161–171.

[2] S. Eyerman and L. Eeckhout, “Modeling Critical Sections in

Amdahl’s Law and its Implications for Multicore Design,” ACM

SIGARCH Comput. Archit. News, New York, NY, USA, vol. 38,

no. 3, June 2010, pp. 362–370.

[3] R. Yan et al., “Communication Pipelining for Code Generation

from Simulink Models,” IEEE Int. Conf. Trust, Security Privacy

Comput. Commun., Melbourne, Australia, July 16–18, 2013, pp.

1893–1900.

[4] G. Kahn and D. MacQueen, “Information Processing: Coroutines

and Networks of Parallel Processes,” Amsterdam, Netherlands:

Gilchrist, B. eds., 1977, pp. 993–998.

[5] E.A. Lee and T.M. Parks, “Dataflow Process Networks,” Proc.

IEEE, vol. 83, no. 5, May 1995, pp. 773–801.

[6] UML, Object Management Group, Inc. Accessed Apr. 1, 2014.

http://www.uml.org/

[7] Simulink, Mathworks. Accessed Apr. 1, 2014. http://www.

mathworks.com

[8] Real-Time Workshop, Mathworks. Accessed Apr. 1, 2014.

http://www.mathworks.com

[9] RTI-MP, dSPACE, Inc. Accessed Apr. 1, 2014. http://www.

spaceinc.com/ww/en/inc/home/products/sw/impsw/rtimpblo.cfm

[10] A. Canedo, T. Yoshizawa, and H. Komatsu, “Automatic

Parallelization of Simulink Applications,” Proc. Annual

IEEE/ACM Int. Symp. Code Generation Optimization, Toronto,

Canada, Apr. 24–28, 2010, pp. 151–159.

[11] A. Canedo, T. Yoshizawa, and H. Komatsu, “Skewed Pipelining

for Parallel Simulink Simulations,” Des., Automation Test Europe

Conf. Exhibition, Dresden, Germany, Mar. 8–12, 2010, pp. 891–

896.

[12] S.-I. Han et al., “Memory-Efficient Multithreaded Code

Generation from Simulink for Heterogeneous MPSoC,” Des.,

Autom. Embedded Syst., vol. 11, no. 4, Dec. 2007, pp. 249–283.

[13] H. Orsila et al., “Automated Memory-Aware Application

Distribution for Multi-processor System-on-Chips,” J. Syst.

Archit., vol. 5, no. 11, Nov. 2007, pp. 795–815.

[14] Y. Yi et al., “An ILP Formulation for Task Mapping and

Scheduling on Multi-core Architectures,” IEEE Des., Autom. Test

Europe Exhibition, Nice, France, Apr. 20–24, 2009, pp. 33–38.

[15] A.K. Singh et al., “Mapping on Multi/Many-core Systems:

Survey of Current and Emerging Trends,” ACM/EDAC/IEEE

Des., Autom. Conf., Austin, TX, USA, Article no. 1, May 29–

June 7, 2013, pp. 1–10.

[16] Y. Wang et al., “Overhead-Aware Energy Optimization for Real-

Time Streaming Applications on Multiprocessor System-on-

Chip,” ACM Trans. Des. Autom. Electron. Syst., vol. 16, no. 2,

Mar. 2011, Article 14.

[17] H. Yang and S. Ha, “Pipelined Data Parallel Task

Mapping/Scheduling Technique for MPSoC,” Des., Autom. Test

Europe Exhibition, Nice, France, Apr. 20–24, 2009, pp. 69–74.

[18] J. Cong, G. Han, and W. Jiang, “Synthesis of an Application-

Specific Soft Multiprocessor System,” Proc. ACM/SIGDA Int.

Symp. Field Programmable Gate Arrays, Monterey, CA, USA,

Feb. 18–20, 2007, pp. 99–107.

[19] M.I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-

Grained Task, Data, and Pipeline Parallelism in Stream

Programs,” Proc. Int. Conf. Archit. Support Programming

Language Operation Syst., San Jose, CA, USA, Oct. 21–25, 2006,

pp. 151–162.

[20] M. Kudlur and S. Mahlke, “Orchestrating the Execution of

Stream Programs on Multicore Platforms,” ACM SIGPLAN

Notices (PLDI’08), vol. 43, no. 6, June 2008, pp. 114–124.

[21] H. Javid and S. Parameswaran, “A Design Flow for Application

Specific Heterogeneous Pipelined Multiprocessor Systems,” Proc.

Annual Des. Autom. Conf., San Francisco, CA, USA, July 26–31,

2009, pp. 250–253.

[22] D. Cordes et al., “Automatic Extraction of Pipeline Parallelism

for Embedded Software Using Linear Programming,” IEEE Int.

Conf. Parallel Distrib. Syst., Tainan, Taiwan, Dec. 7–9, 2011, pp.

699–706.

[23] S.-I. Han, S.-I. Chae, and A.A. Jerraya, “Functional Modeling

572 Kai Huang et al. ETRI Journal, Volume 37, Number 3, June 2015
http://dx.doi.org/10.4218/etrij.15.0114.0502

Techniques for Efficient SW Code Generation of Video Codec

Applications,” Proc. Asia South Pacific Des. Autom. Conf.,

Yokohama, Japan, Jan. 24–27, 2006, pp. 935–940.

[24] S.-I. Han et al., “Simulink®-Based Heterogeneous

Multiprocessor SoC Design Flow for Mixed Hardware/Software

Refinement and Simulation,” J. Integr. VLSI, vol. 42, no. 2, Feb.

2009, pp. 227–245.

[25] C.E. Leiserson and J.B. Saxe, “Retiming Synchronous Circuitry,”

J. Algorithmica, vol. 6, no. 1–6, June 1991, pp. 5–35.

[26] L. Brisolara et al., “Reducing Fine-Grain Communication

Overhead in Multithread Code Generation for Heterogeneous

MPSoC,” Proc. Int. Workshop Softw. Compilers Embedded Syst.,

Nice, France, Apr. 20, 2007, pp. 81–89.

[27] S.-I. Han et al., “Buffer Memory Optimization for Video Codec

Application Modeled in Simulink,” Proc. Annual Des. Autom.

Conf., San Francisco, CA, USA, July 24–28, 2006, pp. 689–694.

[28] C-SKY Inc. Accessed Apr. 1, 2014. http://www.c-sky.com

[29] S.-I. Han et al., “An Efficient Scalable and Flexible Data Transfer

Architecture for Multiprocessor SoC with Massive Distributed

Memory,” Proc. Annual Des. Autom. Conf., San Diego, CA,

USA, June 7–11, 2004, pp. 250–255.

Kai Huang received his BS degree in electronic

engineering from Nanchang University, China,

in 2002. He received his PhD degree in

engineering circuits and systems from Zhejiang

University, Hangzhou, China, in 2008. From

2006 to 2007, he was a short-term visitor with

the TIMA Laboratory, Grenoble, France. From

2009 to 2011, he was a post-doctoral research assistant with the

Institute of VLSI Design, Zhejiang University. In 2010, he also worked

as a collaborative expert at VERIMAG Laboratory, Grenoble, France.

Since 2012, he has been an associate professor with the Department of

Information Science and Electronic Engineering, Zhejiang University.

His current research interests include embedded processors and SoC

system-level design methodology and platforms.

Siwen Xiu received his BS and PhD degrees in

electronic science and technology from Zhejiang

University, Hangzhou, China, in 2009 and 2015,

respectively. Since 2015, he has been a lecturer

with the College of Optical and Electronic

Technology, China Jiliang University, Zhejiang,

China. His current research interests include

MPSoC performance estimation and architecture exploration;

multiprocessor architecture design; SoC design; and information security.

Min Yu received his BS and PhD degrees

in electronic science and technology from

Zhejiang University, Hangzhou, China, in 2009

and 2014, respectively. His current research

interests include performance estimation,

high-performance software exploration on

multiprocessors, and performance-oriented

automatic code generation on MPSoC.

Xiaomeng Zhang received her BS degree

in electronic science and technology from

Zhejiang University, China, in 2013. She is

currently pursuing her PhD degree in electronic

science and technology at the Institute of VLSI

Design, Zhejiang University. Her current

research interests include multiprocessor

software exploration and multithread code generation.

Rongjie Yan received her PhD degree in

computer science and technology from the

Institute of Software, Chinese Academy of

Sciences, Beijing, China, in 2007. She is currently

an assistant researcher with the Institute of

Software, Chinese Academy of Sciences. She

spent two years at VERIMAG, Grenoble, France,

where she focused on compositional and incremental verification

methodology, and correctness-by-construction of component-based

systems. Her current research interests include the modeling and formal

verification of embedded systems.

Xiaolang Yan received his BS and MS degrees

in electronic science and technology from

Zhejiang University, Hangzhou, China, in 1968

and 1981, respectively. From 1993 to 1994, he

was a visiting scholar at Stanford University, Palo

Alto, CA, USA. From 1994 to 1999, he was a

professor and the dean of the Hangzhou Institute

of Electronic Engineering, China. Since 1999, he has been a professor,

the dean of the Information Science and Engineering College, and the

director of the Institute of VLSI Design, Zhejiang University. His current

research interests include embedded CPU design and SoC design

methodology and design for manufacturability.

Zhili Liu received his MS degree in electronics

and communications engineering, Hangzhou

Dianzi University, China, in 2007. His current

research interests include the application of

embedded processors and high-performance &

low-power software exploration.

