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For a multiprocessor System-on-Chip (MPSoC) to 
achieve high performance via parallelism, we must 
consider how to partition a given application into different 
components and map the components onto multiple 
processors. In this paper, we propose a software pipeline–
based partitioning method with cyclic dependent task 
management and communication optimization. During 
task partitioning, simultaneously considering computation 
load balance and communication optimization can cause 
interference, which leads to performance loss. To address 
this issue, we formulate their constraints and apply an 
integer linear programming approach to find an optimal 
partitioning result — one that requires a trade-off 
between these two factors. Experimental results on a 
reconfigurable MPSoC platform demonstrate the 
effectiveness of the proposed method, with 20% to 40% 
performance improvements compared to a traditional 
software pipeline–based partitioning method. 
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I. Introduction 

Recent increasing demand for higher-performing 
embedded systems is helping to promote the use of 
multiprocessor System-on-Chips (MPSoCs) [1]. Given an 
application, one key issue of generating efficient parallel 
codes for a target MPSoC platform is how to partition the 
given application into different components and map the 
components onto different processors with the best 
performance. Software pipeline, a prevalent parallelization 
method, is an effective solution to address this problem. For 
software programs, pipelining introduces a higher degree of 
parallelism, which in turn, increases a program’s throughput. 
For hardware processors, pipelined stages make it easy to 
partition and map decomposed programs onto different 
components to achieve better hardware utilization [1]. 

However, the increasing complexity of applications and 
hardware architectures challenges the efficiency of the software 
pipeline method. To explore the parallelism between a software 
application and a hardware architecture, the software pipeline 
method should take into consideration the following two 
issues: 
■ How to keep balanced workloads while maintaining task 

dependency. High parallelism calls for a balanced pipeline, 
whereby each stage has almost the same execution time and 
linear stage dependency. However, most existing applications 
involving complicated cyclic task dependencies may 
constrain the distribution of tasks among processors, which 
makes it harder to keep balanced workloads among pipelined 
stages without destroying task dependencies. 
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■ How to minimize communication overheads. With the 
increasing complexity of MPSoC, inter-stage communication 
is becoming an ineligible factor for software pipeline. 
Decomposing a task into finer-grained subtasks results in 
higher overhead in synchronizing subtasks, with lower 
system performance and scalability [2]. Thus, how to reduce 
the communication overhead between software pipeline 
stages should also be considered. 
In some cases, the aforementioned issues may well interfere 

with each other, making software pipeline construction even 
harder. Communication pipeline [3] is a communication 
optimization technique that can significantly hide 
communication transfer times between processors. But, its 
additional latency may impact on the handling of cyclic 
dependent tasks and cause nonadjustable imbalanced 
workloads. Therefore, we have to maintain a trade-off between 
load balance and communication optimization for better 
parallelism. 

In this paper, we propose a software pipeline–based 
partitioning method with cyclic dependent task management 
and communication optimization. The interference between 
communication optimizations and workload balance is well 
addressed for better performance. We first analyze how to 
partition general pipeline stages for cyclic dependent tasks. 
Next, we quantify the inter-stage communication pipeline 
optimization on a software pipeline partition, and then we 
formulate the constraints of communication optimization in our 
integer linear programming (ILP) formulations for a better 
partitioning result. Finally, each pipeline stage is mapped to one 
processor. 

The main contributions of this paper are summarized as 
follows. First, the proposed method combines both software 
pipeline and communication pipeline techniques to balance 
computation load and reduce communication overhead. For 
the first time, a cyclic constraint for a general software pipeline 
technique is investigated and two kinds of pipelines are 
combined and executed well. Second, the software pipeline–
based partitioning method is integrated into a Simulink-based 
multithreaded code generation flow for MPSoC, which 
implements the automatic generation of efficient parallel code 
from sequential applications. 

The rest of the paper is organized as follows. Section II gives 
some related works. Section III describes the background of 
the Simulink model, software pipeline, and communication 
pipeline. Section IV introduces the proposed partitioning 
method. Section V shows the feasibility of the implementation 
of our method. Section VI features discussions of our 
experiments and results. Section VII concludes the paper and 
highlights directions for future work. 

II. Related Work 

The current related literature offers plenty of methods on 
code generation from high-level models. Most methods are 
based on functional modeling, such as Khan process networks 
[4], dataflow [5], UML [6], and Simulink [7]. As a prevalent 
environment for modeling and simulating complex systems at 
an algorithmic level of abstraction, Simulink has been widely 
used, such as in Real-Time Workshop® [8], dSpace [9], and 
many other code generators [10]–[11]. Light and Efficient 
Simulink Compiler for Embedded Application (LESCEA) [12] 
is an automatic code generation tool with memory-oriented 
optimization techniques. Nevertheless, the partitioning of an 
application in LESCEA is conducted manually, which requires 
expertise and significantly affects the performance of the 
generated codes. 

The high performance requirements of embedded 
applications necessitate the need to realize efficient partitioning 
methods. Much literature can be found to tackle this problem. 
For example, search-based approaches are extensively used, 
such as simulated annealing in [13], ILP in [14], which     
can achieve optimal or near-optimal solutions. Further, 
performance metrics, such as communication latency, memory, 
energy consumption, and so on, are optimized along with 
partitioning methods (see [15] for more details). 

As a prevalent parallelization method, software pipeline is 
widely studied. Cyclic task dependency is an important factor 
that limits the performance of a software pipeline. In [16]–[18], 
all of the three mentioned approaches exploit the retiming 
technique to transform intra-iteration task dependency into 
inter-iteration task dependency to implement a task-level 
coarse-grained software pipeline. However, communication is 
not fully considered in these works. In [19], the authors 
construct a software pipeline for streaming applications, where 
communication is optimized through laying buffers in 
communication channels. As a result, the sending and receiving 
of data between different processors can be operated 

independently to avoid synchronization overhead, which is 
similar to our work. In [20], the partitioned streaming 
application is assigned to pipeline stages in such a way that all 
communication (DMA) is maximally overlapped with 
computation on the cores. Nevertheless, the assumption that 
the whole streaming application model has no feedback loops 
limits the utilization of the software pipeline in real-life 
applications. 

ILP is a well-known approach for the ability to calculate 
optimal results for partitioning problems. It is also applied to 
generate software pipelines. ILP is exploited in [20] to 
determine the assignment of synchronous dataflow actors to 
pipeline stages corresponding to processors to minimize the 
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maximal load of any processor. In [21], an ILP formulation is 
utilized to search a smaller design space and find an 
appropriate configuration for ASIPs, with the objective of 
minimizing the system area and satisfying system runtime 
constraints in pipelined processors. An ILP-based mapping 
approach is presented in [22] to minimize the most expensive 
path in a pipeline under the constraints of program dependency 
and the maximal number of concurrently executed components.  
In summary, the aforementioned methods do not significantly 
consider the discussed two factors (cyclic task dependency and 
communication overhead) in software pipeline. 

Previous works have implemented software pipeline in 
various ways and integrated certain optimizations on cyclic 
task dependencies or communications. In this paper, we 
consider cyclic task dependency and communication 
overheads to achieve a trade-off between load balance and 
communication optimization. We integrate the techniques 
(cyclic task dependency management and communication 
optimization) handling the two problems into our software 
pipeline partitions, and we utilize ILP formulations to quantify 
and combine the above two factors to obtain higher performance. 

III. Background 

1. Simulink Model 

This work is based on the concepts of Simulink models, 
which have been introduced in previous works [12], [23]–[24]. 
A Simulink model represents the functionality of a target 
system with software functions and hardware architectures. It 
has the following three types of basic components: 
■ A Simulink block represents a function that takes inputs and 

produces certain outputs. Examples include user-defined (S-
function), discrete delay, and pre-defined blocks such as 
mathematical operations. For ease of discussion, we mainly 
focus on communication (sending and receiving) blocks (see 
the gray circles in Fig. 1) and functional blocks (see the white 
circles in Fig. 1). 

■ A Simulink link is a one-to-many link, which connects one 
output port of a block to one or more input ports from 
corresponding blocks, and it represents a dependency 
relation between different blocks. A link from block F0 to 
block F1 means F1 depends on F0, denoted by F0→F1. We 
name a Simulink link starting from a sending block S and 
ending with a receiving block R (from different processors) 
as a communication vector, which we denote by S→R. 

■ A Simulink subsystem can contain blocks, links, and other 
subsystems to represent hierarchical composition and 
conditionals such as for-loop iteration and if-then-else 
structures. 

 

Fig. 1. Hierarchical structure of MPSoC Simulink model. 
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A Simulink model is specified as a two-layered hierarchical 
structure, as illustrated in Fig. 1. The system layer describes a 
system architecture that is made up of CPU subsystems and 
inter-subsystem communication channels. The subsystem layer 
describes a CPU subsystem architecture that includes a set of 
partitioned applications made up of Simulink blocks and links 
and intra-subsystem communication channels. 

2. Software Pipeline 

Software pipeline is a prevalent parallelization method, 
where the output of each stage is the input of the next so that a 
software application works in a decomposed and pipelined way.  
An n-stage software pipeline is shown in Fig. 2. To analyze 
timing relationships, we assume that applications are executed 
in cycles [12], [24] (a cycle means that from some point 
partitioned applications on all processors have been executed 
once). Thus, at the same time, from Fig. 2, we can say that s0 is 
executed at cycle i, s1 at cycle (i – 1), and so on. In a traditional 
software pipeline, a given stage is one cycle later than the 
previous stage, which serves to definer a stage-interval latency 
of one cycle. Typically, software pipelines are linear and one-
directional, which means data flows in one certain direction 
without cyclic task dependencies in one execution cycle. 

3. Communication Pipeline 

A communication pipeline can be used to hide inter-
processor communication transfer overhead. It has the 
advantages of direct memory access (DMA), which can 
autonomously execute data transfer without intervention of 
processors to achieve a parallelization of computation and 
communication. Derived from the store-and-forward pipeline, 

 

 

Fig. 2. Traditional software pipeline. 
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Fig. 3. Codes for communication pipeline: (a) model with DMA, 
(b) code for P1 w/o CP, and (c) code for P1 with CP. 
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P1 (){ 
  while (1){ 
    R0 (m0); 
    F1 (m0, m1); 
    S1 (m1); 
  } 
} 
 

P1 (){ 
  clk=0;  
  nb_R0 (m0[clk%2]); 
  while (1){ 
    nb_R0 (m0[(clk+1)%2]); 
    F1 (m0[clk%2], m1); 
    S1(m1); 
    clk++; 
  } 
} 

 
 

 

Fig. 4. Comparison of execution sequence for CPU1 in Fig. 3: (a) 
execution sequence w/o CP and (b) execution sequence 
with CP. 
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data required for a computation in the current cycle is received 
one cycle in advance and buffered in extra memory; therefore, 
functional blocks can use the buffered data directly in the 
current cycle. In this way, no more waiting time for receiving 
data is required and latency between receiving data and 
computation can be reduced. 

Figure 3(a) shows an example of a communication pipeline. 
In this figure, there is a chain of processors. We denote F to be 
a function block waiting for some input from receiving block  
R and outputting functioning results to sending block S in 
processor P. In Fig. 4, the execution sequence demonstrates the 
idea of parallelism. Without a communication pipeline, F1 has 
to wait for R0 in the same cycle in Fig. 4(a). However, in   
Fig. 4(b), R0, F1, and S1 of different cycles are executed in 
parallel with the help of a communication pipeline, and the 
waiting time for receiving data can then be saved. 

IV. Software Pipeline Partitioning Method 

In this section, we present our proposed software pipeline–
based partitioning method. In the first two subsections, we first 
introduce the rules to address the cyclic dependency between 
tasks and communication overheads. Then, in the third  

 

Fig. 5. Cyclic constraint analysis. 

Stage: 

Cycle 
(i) 

Cycle 
(i–t1) 

Cycle 
(i–t1–t2–…–tm–1)

Current cycle: ... Cycle 
(i–t1–t2–…–tm)

Z–k 

S0 Sn+1 Sn+m–1 Sn+m 

 
 
subsection, we integrate these rules into our ILP formulations 
to obtain optimal partitioning results. 

1. Cyclic Dependent Task Management 

When partitioning an application into several pipeline stages, 
the tasks dependencies, also known as the topologies of task 
graphs, should be determined. For complicated applications, 
task graphs may consist of many cyclic task dependencies, 
which makes it difficult to partition tasks to processors since 
only linear dependencies are allowed between stages. Thus, to 
meet the linear demand, a cyclic constraint should be set first 
before any other operations.  

To avoid deadlock, a feedback edge in a task graph indicates 
Z–k delays between tasks that are pre-defined by a Simulink  
model, as shown in Fig. 5. A general solution to breaking the 
loops as well as maintaining data dependency is retiming [25], 
which has been used in traditional software pipelines. However, 
not all software pipelines uniformly have a one-cycle stage 
interval latency. In some particular cases, a stage of a software 
pipeline may be more than one cycle later than the stage that 
precedes it, and some stages may have slightly different cycle 
stage intervals. As long as the application is executed for 
enough cycles (far more than the number of pipeline stages and 
stage interval latency), the performance of the software 
pipeline is not affected. Therefore, we analyze a cyclic 
constraint that will suit general software pipelines.  

In a cyclic task dependency situation, as shown in Fig. 5, 
partitioning a software pipeline should satisfy the following 
constraint: In theory, the sum of the stage interval latencies 
between the stages directly connected with the feedback edge 
should be less than the minimum number of the delayed cycles 
of the feedback edge. We take Fig. 5 as an example to illustrate 
the constraint. Suppose that the target is to get m pipeline cuts 
on the Z–k feedback edge starting from the last stage sn+m and 
ending with the first stage sn. Meanwhile, the stage interval 
latency is t1, t2, … , tm from sn to sn+m, respectively. Let us 
assume that stage sn is currently processing data of cycle i. 
Then, to form the required software pipeline, sn+1 should be 
timed so as to process data of cycle (i – t1), sn+2 to cycle (i – t1 –
t2), and so on and so forth until the last stage sn+m to cycle (i – 



566   Kai Huang et al. ETRI Journal, Volume 37, Number 3, June 2015 
http://dx.doi.org/10.4218/etrij.15.0114.0502 

t1– t2 – … – tm). Stage sn of cycle i needs to use the data from 
sn+m of cycle (i – k), so we should guarantee that data from 
cycle (i – k) is ready at present, which means that i – k < i – t1 –

t2 –…– tm. Solving the inequality, we get 
1

i
i m

t k
 

 , which is 

the mathematical explanation of the cyclic constraint. 
Under this cyclic constraint, some feedback edges cannot be 

cut into the defined number of pipeline stages. In this case, 
tasks directly linked to Z–k are roughly classified into a single 
stage. The cyclic dependency constraint can be used in any task 
graph; and under this constraint, any feasible pipeline cuts will 
not violate the original task dependencies. However, this 
constraint limits the places of pipeline cuts, which adds 
difficulties on workload balance. 

2. Communication Optimization 

The large amount of communication caused by a software 
pipeline partition can be handled by combining   
communication optimization techniques. In this work, we 
combine a communication pipeline with a traditional software 
pipeline to hide inter-processor communication transfer costs. 
To further improve performance, we first quantify the pros and 
cons of a communication pipeline, and then we describe the 
changes that will occur when combining a communication 
pipeline and software pipeline. 

A. Quantification  

In our background work in this paper, we have introduced 
the basic functions of a communication pipeline. From Fig. 4, 
we can infer that applying a communication pipeline once can 
save the transfer time of a particular communication vector, 
which contributes to performance improvements. The transfer 
time is proportional to the transfer data size, and it can be 
calculated. 

On the other hand, a communication pipeline introduces 
delay, which may degrade performance. Reconsider the 
example in Fig. 3; we can observe from Fig. 6(b) that with P2 
applied to the communication pipeline, R1 is receiving data of 
cycle i while F2 and S2 are processing data of cycle (i – 1). 
Without the communication pipeline, in Fig. 6(a), R1, F2, and 
S2 are all processing data of cycle i. Thus, in Fig. 6(b), if we 
want to reach the point where S2 sends data of cycle i, we have 
to wait for another cycle to be completed, which means that the 
communication pipeline does result in a cycle time delay. The 
cycle time can be obtained by profiling before executing the 
application. 

B. Combination 

A communication pipeline can only be applied to an inter- 

 

Fig. 6. Comparison of execution sequences: (a) execution sequence 
without CP and (b) execution sequence with CP. 
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processor. To take advantage of this characteristic, in our 
software pipeline, each stage is eventually mapped to a 
processor, and the communication pipeline can then be applied 
to inter-stage processors. Moreover, to make it simple and 
reasonable, if a communication pipeline is to be applied 
between a pair of processors, then we first combine all 
communication vectors between the two processors into one 
coarse-grained communication vector, and then we use the 
communication pipeline on the receiving processor. In this case, 
we will intentionally not apply the communication pipeline to 
the receiving blocks on feedback edges, although it works in 
theory. 

The combination of a communication pipeline and software 
pipeline brings changes to the traditional software pipeline. For 
a traditional software pipeline, a stage should process data one 
cycle earlier than its successor. Since a communication pipeline 
itself requires one-cycle latency, the one-cycle stage interval 
latency is not enough for both the communication pipeline and 
the software pipeline. Therefore, if a stage is applied to a 
communication pipeline, then there should be two cycles of 
stage interval latency between this stage and its predecessor. 
We take the example in Fig. 3 to explain the reasons. In this 
case, the chain of processors works in a pipeline way. The 
following analysis shows a comparison of the cases with and 
without a communication pipeline. 

a. Without Communication Pipeline 
Suppose that P1 is processing data of cycle i, which means 

that R0, F1, and S1 are executed sequentially and that they deal 
with the data in the same cycle, i. To ensure a software pipeline, 
P2 should be processing data of cycle (i – 1), which means R1, 
F2, and S2 are at cycle (i – 1), so when the next cycle arrives, 
R1 can receive data from S1 and deal with it afterwards. In this 
case, the software pipeline has a one-cycle stage interval 
latency. However, this will cause a waste of time waiting for 
receiving, as shown in Fig. 7(a). 

b. With Communication Pipeline  
Suppose that P1 is processing data of cycle i, which means 

that F1 and S1 are executing serially at cycle i. To buffer received  



ETRI Journal, Volume 37, Number 3, June 2015 Kai Huang et al.   567 
http://dx.doi.org/10.4218/etrij.15.0114.0502 

 

Fig. 7. Comparison of execution sequences: (a) execution sequence 
without CP and (b) execution sequence with CP. 

DMA 

P1 

DMA 

P2 

DMA 

P1 

DMA 

P2 

R0 (i) 

F1 (i) F1 (i+1) 

R0 (i+1)

R1 (i–1) 

S1 (i)

Initiate DMA 
data transfer 

Wait for  
receiving data

Initiate DMA 
data transfer 

Wait for  
receiving data S1 (i+1)

S2 (i)

R1 (i) 

S2 (i–1) 

F2 (i–1) F2 (i) 

(a) t

R0 (i+1) R0 (i+2)

S1 (i+1) S1 (i) 

F1 (i+1) F1 (i) 

R1 (i–1) R1 (i) 

Initiate DMA 
data transfer 

Initiate DMA 
data transfer S2 (i–2) S2 (i–1) 

F2 (i–2) F2 (i–1) 

(b) t

 
 
data beforehand, R0 should be executing data of cycle (i + 1). 
Since DMA handles the data transfer, P1 can start the next 
cycle of execution immediately, which means that S1 (i), R0 (i 
+ 2), and F1 (i + 1) can concurrently execute, since they do not 
depend on each other. After S1 finishes sending data of cycle i 
on processor P1, R1 receives the data of cycle i on processor 
P2. To ensure a communication pipeline is applied to each pair 
of processors, while R1 is receiving, F2 from the same 
processor P2 should be computing at cycle (i – 1), which 
means that P2 is processing data of cycle (i – 1). Therefore, 
there is a two-cycle latency between software pipeline stages 
with a communication pipeline, as shown in Fig. 7(b). 
Comparing the two execution sequences in Fig. 7, the waiting 
time can be reduced after applying a communication pipeline. 

3. ILP Formulations of Pipeline Partition 

The techniques on cyclic dependent task management and 
communication optimization are further encoded in the 
following ILP formulations, to achieve a trade-off between the 
given constraints.  

A. Constants and Variables in ILP Formulation 

We define the following constraints and variables for use 
with our ILP formulations: 
■ n — the number of tasks. 
■ m — the number of stages. 
■ T — set of tasks T = {T1, T2, … , Tn}. 
■ S — set of stages S = {S1, S2, …, Sm}. 
■ ti — execution time of task Ti. 
■ Ttrans,ij — the data transfer time between task Ti and task Tj. 

■ CPi is a Boolean variable. It is equal to “1” if a 
communication pipeline is applied to the receiving blocks on 
stage i; otherwise, it is equal to “0.” 

■ Dij is a Boolean variable. It is equal to “1” if task Tj depends 
on task Ti without delayed feedback; otherwise, it is equal to 
“0.” 

■ Zij is a variable indicating the number of delayed cycles 
between task Ti and task Tj if task Tj depends on task Ti. If Tj 
does not depend on task Ti, then it is equal to infinity. 

■ Aij is a Boolean variable. It is equal to “1” if task Ti is assigned 
to stage Sj; otherwise, it is equal to “0.” 

B. Objective Function 

A high-performance software pipeline can be achieved by 
maximizing performance improvements (PM) and minimizing 
workload variance (WV). Therefore, the objective function is 
as follows, where weights k0 and k1 can be tuned by the user to 
control the trade-off between communication optimization and 
workload balance:  

0 1max( PM WV),k k                 (1) 

where 

' ' ' trans, ' '
' |S| , ' |T|,

, ' |S|

PM CP ,ij i j ii ii j
j i i

j j

A A D T
 



    
  
  

      (2) 

2

|S| |T| |T|

1
WV ( ) .i ij i

j i i

t A t
m  

                     (3)

 
Here, PM represents the PM brought by a communication 
pipeline. As analyzed in Section IV-2-A, a communication 
pipeline can save the transfer time of all communication 
vectors between a pair of processors, so PM is the sum of the 
saved transfer times of all the communication pipelines. In the 
objective function, we aim to maximize PM. 

The degree of workload balance in the software pipeline is 
represented by WV. It calculates the variance of the stage 
execution times, which is defined as the execution time of each 
stage deviated from the ideal balanced time (mean time). The 
less WV is, the more balanced the software pipeline is. Thus, in 
the objective function, we try to minimize WV. 

C. Constraints 

■ Each task must be mapped to a single stage. 

|S|

1.ij
j

A


                   (4) 

■ For any two tasks Ti and Ti', a direct backward data 
dependency does not exist. That is, if Ti is mapped to stage Sj, 
then Ti' is mapped to stage Sj', and if Ti' depends on Ti, then j' 
is no less than j. 
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' ' '(3 ) ' 0,ij i j jjA A D M j j              (5) 

where M indicates an integer large enough to guarantee that 
the inequality is satisfied. 

■ Using the cyclic constraint discussed above, if feedback 
edges with delay units exist between a pair of stages, then we 
should make sure the sum of the stage interval latencies 
between is smaller than the number of delay units. 
Considering a communication pipeline, the stage interval 
latency here consists of software pipeline latency as well as 
communication pipeline latency. 

' '
'

(2 ) ' CP .ii ij ij k
j k j

Z A A M j j
 

             (6) 

V. Implementation 

The proposed techniques have been implemented based on 
the LESCEA multithreaded code generator of the Simulink-
based MPSoC Design Platform [12], [26]–[27]. The 
multithreaded code generator takes a Simulink model as an 
input and generates a set of software thread codes. It then 
builds software stacks that are executable on the target 
hardware architecture. Figure 8 shows the global flow of the 
code generation that produces an efficient thread code and a 
main C code for each CPU subsystem. The Simulink blocks    
 

 

Fig. 8. Design flow of automatic code generation tools. 
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within a CPU subsystem are scheduled statically according to 
data dependency. Notice that in this work, we consider all 
blocks and links on each processor in one thread. The whole 
design flow of automatic code generation consists of the 
following three steps: 
1) Software pipeline partitioning. An application represented 

by Simulink blocks and links is partitioned into pre-defined 
software pipeline stages using an ILP method considering 
cyclic dependent tasks and communication optimization, 
and then each stage is mapped onto each processor. 

2) Thread code generation. A C code is generated for each 
thread, which includes memory declarations, a sequence of 
function calls corresponding to the invocation order of 
blocks, and memory space allocation. Moreover, the 
generated code also includes communication primitives for 
communications.  

3) HdS Adaption. In this step, a main code that is responsible 
for creating threads and initializing channels for the target 
CPU subsystem and a Makefile that links the thread with 
the HdS library for each processor are generated. 

VI. Experiments 

1. System Emulation Platform 

Our experiments adopt a Motion-JPEG decoder and an 
H.264 Baseline decoder as a benchmark for the proposed 
techniques. Meanwhile, a flexible MPSoC hardware platform 
with an efficient interconnection network for scalability is used 
as the hardware architecture. As shown in Fig. 9, the hardware 
platform consists of several CPU subsystems (n ranges from 
two to eight), a memory subsystem, and an interconnection 
subsystem. Each CPU subsystem uses a 32-bit high-speed bus 
to connect one processor with its local SRAM and a 32-bit 
low-speed bus to other local peripherals, such as a timer. The 
processor type in the CPU subsystem is configured as a 32-bit 
3-stage ultra-low-power RISC CKCore processor [28] without 
instruction and data cache. The memory subsystem uses a  
64-bit high-speed bus to connect to an off-chip global DDR2 
SDRAM. These two subsystems are connected to a distributed 
memory server (DMS) interconnection subsystem through a 
memory service access point (MSAP) [29]. The DMS acts as a 
server and provides the communication and synchronization 
services to the subsystems in an MPSoC. Each MSAP delivers 
data transfer requests issued by its corresponding subsystem to 
other MSAP via the control network. Each MSAP also 
exchanges synchronization information, which indicates the 
completions of requests handling, with other MSAP via the 
control network. 

The software platform consists of thread codes, CPU main  



ETRI Journal, Volume 37, Number 3, June 2015 Kai Huang et al.   569 
http://dx.doi.org/10.4218/etrij.15.0114.0502 

 

Fig. 9. MPSoC hardware platform. 
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Table 1. Experiments integrating different techniques. 

Techniques vs. experiments M0 M1 M2 M3

Software pipeline √ √ √ √ 

Cyclic dependent task management  √ √ √ 

Communication optimization   √ √ 

Trade-off between computation balance and 
communication optimization 

   √ 

 

 
codes, and an HdS library on each target CPU. The application 
model is mapped to the target 4/6/8-CPU hardware platform. 
The inter-processor communication channels are allocated, if 
not specially noted, with global SDRAM and implemented by 
MSAP configuration. The experimental results about time cost 
and processor utilization are obtained from FPGA emulation 
using 100-frame QVGA MJPEG and 300-frame CIF H.264 
bitstream as inputs. 

To evaluate the effectiveness of the proposed method, our 
experiment is conducted based on an LESCEA code generator, 
which implements partitioning manually. There are four sets of 
experiments with different combinations of our techniques 
over the same application, as illustrated in Table 1. Experiment 
M0 includes a basic software pipeline where only workload 
balance is considered during partitioning. Experiment M1  
takes not only workload balance but also cyclic dependent      
task management into account. Experiment M2 adds 
communication optimizations to all available inter-processor 
communication vectors based on M1. Experiment M3 is the 
proposed software pipeline partitioning method. We mainly 
compare the performance denoted by the total execution cycles 
and processor usage from these experiments. 

2. Experimental Results 

The Simulink functional model of the MJPEG decoder  

 

Fig. 10. Total cycles of each case in MJPEG experiment. 
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Fig. 11. Total cycles of each case in H.264 decoder experiment.
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consists of 7 S-functions, 7 delays, 26 data links, and 4 If-
Action subsystems (IASs). We mapped this model to the target 
2-CPU hardware platform with four threads. This abstract 
clock synchronous model [23] is built on an 8 × 8 block index 
as an abstract clock to represent parallelism and 
communication explicitly. The experiments integrating 
different techniques are conducted on a 2-CPU and 3-CPU 
hardware platform. As shown in Fig. 10, we can find that M1 
almost keeps the same performance as M0 because there is no 
cyclic-dependent issue in simple MJPEG application. With 
communication optimization, the performance is improved 
explicitly by almost 9% in the 2-CPU case and 11% in the   
3-CPU case. Using techniques in balancing load and 
communication in M3 brings an extra 7% improvement over 
M2 in the 3-CPU case. 

To further analyze the advantage of our techniques, a more 
complicated H.264 application is used with more fine-
granularity thread partitioning. The Simulink application model 
of the H.264 decoder used in this experiment consists of 83 S-
functions, 24 delays, 286 data links, 43 IASs, 5 For-Iteration 
subsystems, and 101 pre-defined Simulink blocks. This model 
is built on a 16 × 16 macro block index as an abstract clock 
with good granularity to represent parallelism and 
communication explicitly. Cyclic topologies in the model are 
presented to describe the dependency of neighboring blocks 
caused by spatial compensation and a deblocking filter. The 
experiments integrating different techniques are conducted on 
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4-CPU, 6-CPU, and 8-CPU hardware platforms. 
The time cost is presented by the number of cycles in Fig. 11. 

Comparing to M0, where, except for the workload balance, 
neither cyclic dependent tasks nor communication overhead  
is taken into consideration, we have achieved overall PMs on 
all of the 4/6/8 CPUs after applying M3. For a 4-CPU platform, 
an 18.8% improvement is obtained. This increases to 31.6% 
and 40.5% for the 6-CPU and 8-CPU platforms, respectively.  

Compared to M0, M1 obtains PMs after considering cyclic 
dependent tasks. In fact, focusing on workload balance and 
ignoring cyclic dependences between tasks in M0 may lead to 
an unreasonable software pipeline partition, where part of the 
tasks can not be pipelined to improve performance. This 
comparison proves the necessity of the cyclic dependent task 
management in a software pipeline. 

Compared to M0 and M1, M2 addresses the two challenges 
discussed above. However, it does not consider the relationship 
between communication overhead and cyclic dependent tasks. 
As a result, with the increasing number of processors, the side 
effects of the communication pipeline goes beyond the benefits 
it brings, causing around 9% worse performance compared to 
M1 (4/6-CPU), which indicates that the trade-off between 
communication optimizations and load balance should be 
taken into account when designing an efficient software pipeline.  

To analyze the reason for performance improvements and 
degradations more clearly, a processor state can be divided  
into three categories in our experiment — communication 
(comm) state, idle state, and computation (comp) state. The 
communication state consists of a communication setup state 
and a transfer state; and the idle state includes all the 
synchronization waiting states, all of which represent 
communication overhead and all of which need to be reduced. 
The computation state represents the real processor usage state. 
Here, we use the average percentage of processor usage among 
multiple processors in every experiment set to evaluate the 
resource utilization of the whole system. 

In Fig. 12, the average processor usage percentages of  
4/6/8-CPU are demonstrated. Although the processor usage 
percentage decreases from 77.2% to 68.8% as the number of 
processors grows, the total execution cycles are reduced 
significantly with the proposed method, as we can see       
in Fig. 11. Moreover, communication overhead and 
synchronization waiting time are cut down effectively in each 
of the 4/6/8-CPU cases. In addition, Fig. 12 certifies our 
explanations for the processor usage decrease in M2 that 
though a communication pipeline can reduce communication 
overheads significantly, the over-application of it adds more 
limits to the cyclic dependent task management and affects the 
workload balance. Imbalanced workloads lead to more idle 
time among processors and degrade the system performance. 

 

Fig. 12. Processor usage percentage. 
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Fig. 13. Workload of each processor in 4/8-CPU cases: (a) 4-CPU
case and (b) 8-CPU case. 
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Figure 13 gives a comparison between M0 and M3 of the 
workloads of each processor under the 4-CPU and 8-CPU 
cases. In both cases, M3 is not as balanced as M0, which     
is caused by the ILP trade-off between workload balance     
and communication optimizations. If the performance 
improvement brought by a balanced partition is less than that 
brought by the communication pipeline under a less balanced 
partition, then we will sacrifice some degree of balanced 
workloads for better performance. The comparison indicates 
that our software pipeline–based partitioning method is  
flexible at adjusting workload balance and communication 
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optimizations to obtain best performance. 
The whole experimental results have illustrated that the 

proposed software pipeline–based partitioning method 
considering cyclic dependent task management and 
communication optimization as well as their trade-off can 
improve system performance effectively in MPSoC. 

VII. Conclusion 

To improve the performance of MPSoC applications, we 
have proposed techniques to address the challenges of cyclic 
dependency between tasks and communication optimization in 
software pipeline–based partitioning. The most important 
contribution is a novel software pipeline partitioning method 
integrating cyclic dependent task management and 
communication optimizations as well as maintaining the  
trade-off between workload balance and communication 
optimizations. The experimental results demonstrate the 
effectiveness of our method. As one of our future works, we 
will introduce techniques to improve the processor utilization 
in our design. One possibility is to apply buffer allocation 
techniques to obtain further improvement in system 
performance. Furthermore, we will also explore this work on 
other kinds of applications. 
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