• 제목/요약/키워드: Design wind speed criteria

검색결과 32건 처리시간 0.021초

Fragility curves for woodframe structures subjected to lateral wind loads

  • Lee, Kyung Ho;Rosowsky, David V.
    • Wind and Structures
    • /
    • 제9권3호
    • /
    • pp.217-230
    • /
    • 2006
  • This paper describes a procedure to develop fragility curves for woodframe structures subjected to lateral wind loads. The fragilities are cast in terms of horizontal displacement criteria (maximum drift at the top of the shearwalls). The procedure is illustrated through the development of fragility curves for one and two-story residential woodframe buildings in high wind regions. The structures were analyzed using a monotonic pushover analysis to develop the relationship between displacement and base shear. The base shear values were then transformed to equivalent nominal wind speeds using information on the geometry of the baseline buildings and the wind load equations (and associated parameters) in ASCE 7-02. Displacement vs. equivalent nominal wind speed curves were used to determine the critical wind direction, and Monte Carlo simulation was used along with wind load parameter statistics provided by Ellingwood and Tekie (1999) to construct displacement vs. wind speed curves. Wind speeds corresponding to a presumed limit displacement were used to construct fragility curves. Since the fragilities were fit well using a lognormal CDF and had similar logarithmic standard deviations (${\xi}$), a quick analysis to develop approximate fragilities is possible, and this also is illustrated. Finally, a compound fragility curve, defined as a weighted combination of individual fragilities, is developed.

A joint probability distribution model of directional extreme wind speeds based on the t-Copula function

  • Quan, Yong;Wang, Jingcheng;Gu, Ming
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.261-282
    • /
    • 2017
  • The probabilistic information of directional extreme wind speeds is important for precisely estimating the design wind loads on structures. A new joint probability distribution model of directional extreme wind speeds is established based on observed wind-speed data using multivariate extreme value theory with the t-Copula function in the present study. At first, the theoretical deficiencies of the Gaussian-Copula and Gumbel-Copula models proposed by previous researchers for the joint probability distribution of directional extreme wind speeds are analysed. Then, the t-Copula model is adopted to solve this deficiency. Next, these three types of Copula models are discussed and evaluated with Spearman's rho, the parametric bootstrap test and the selection criteria based on the empirical Copula. Finally, the extreme wind speeds for a given return period are predicted by the t-Copula model with observed wind-speed records from several areas and the influence of dependence among directional extreme wind speeds on the predicted results is discussed.

인공광하의 공정육묘용 풍동 설계 및 공정묘 개체군상의 공기역학적 특성 (Design of a Wind Tunnel for Plug Seedlings Production under Artificial Light and Aerodynamic Characteristics above Plug Stand)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.429-435
    • /
    • 1996
  • A wind tunnel consisting of two air flow conditioners with polycarbonate pipes, a plant growth room, a suction fan and fan controller, and fluorescent lamps, was designed to investigate the interactions between the growth of plug seedlings under artificial light and their Physical environments. Light transmissivities in the plant growth room based on the photosynthetic photon flux density and photosynthetically active radiation was appeared to be 96.3% and 96.8%, respectively. Measurement showed a uniformity in the vertical profiles of air current speed at the middle and rear regions of plug trays in wind tunnel. This result indicated that the development of a wind tunnel based on the design criteria of the American Society of Mechanical Engineers was adequate. Air current speed inside the plug stand was significantly decreased due to the resistance by the leaves of plug seedlings and boundary layer developed over and below the plug stand. Driving force to facilitate the diffusion of gas inside the plug stand might be regarded as extremely low. Aerodynamic characteristics above the plug stand under artificial light were investigated. As the air current speed increased, zero plane displacement decreased but roughness length and frictional velocity increased. Zero plane displacement linearly increased with the average height of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on the microclimate over and inside the plug stand and to collect basic data for a large-scale plug production under artificial light in a semi-closed ecosystem.

  • PDF

Computational method in database-assisted design for wind engineering with varying performance objectives

  • Merhi, Ali;Letchford, Chris W.
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.439-452
    • /
    • 2021
  • The concept of Performance objective assessment is extended to wind engineering. This approach applies using the Database-Assisted Design technique, relying on the aerodynamic database provided by the National Institute of Standards and Technology (NIST). A structural model of a low-rise building is analyzed to obtain influence coefficients for internal forces and displacements. Combining these coefficients with time histories of pressure coefficients on the envelope produces time histories of load effects on the structure, for example knee and ridge bending moments, and eave lateral drift. The peak values of such effects are represented by an extreme-value Type I Distribution, which allows the estimation of the gust wind speed leading to the mean hourly extreme loading that cause specific performance objective compromises. Firstly a fully correlated wind field over large tributary areas is assumed and then relaxed to utilize the denser pressure tap data available but with considerably more computational effort. The performance objectives are determined in accordance with the limit state load combinations given in the ASCE 7-16 provisions, particularly the Load and Resistance Factor Design (LRFD) method. The procedure is then repeated for several wind directions and different dominant opening scenarios to determine the cases that produce performance objective criteria. Comparisons with two approaches in ASCE 7 are made.

과부화 방지를 위한 쐐기형 레일클램프의 지지대 위치 설정 (Determining the Position of Supporter to prevent a Overload applied to the Wedge Type Rail Clamp)

  • 한동섭;한근조;이성욱
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.294-297
    • /
    • 2006
  • The rail clamp is the device to prevent the crane slips along a rail from the wind blast as well as to locate a container crane in the set position during an operating mode. In this study we conduct the research for determining the proper position of supporter to prevent the overload applied to the rail clamp with respect to the wedge angle in the wedge type rail clamp. The friction force between the jaw pad and the rail to prevent that the crane slips along a rail, when the wind blows, is generated fly the rail-directional wind load. Accordingly the proper position of the supporter to prevent the overload is determined fly analyzing the forces applied to the rail clamp in the wedge working stage. In order to analyze the effect of the wedge angle on the position of supporter, 5-kinds of wedge angles, such as 2, 4, 6, 8, $10^{\circ}$, were adapted as the design parameter, and the wind speed of 40m/s was adapted as the design wind speed criteria.

  • PDF

Analysis and optimal design of fiber-reinforced composite structures: sail against the wind

  • Nascimbene, R.
    • Wind and Structures
    • /
    • 제16권6호
    • /
    • pp.541-560
    • /
    • 2013
  • The aim of the paper is to use optimization and advanced numerical computation of a sail fiber-reinforced composite model to increase the performance of a yacht under wind action. Designing a composite-shell system against the wind is a very complex problem, which only in the last two decades has been approached by advanced modeling, optimization and computer fluid dynamics (CFDs) based methods. A sail is a tensile structure hoisted on the rig of a yacht, inflated by wind pressure. Our objective is the multiple criteria optimization of a sail, the engine of a yacht, in order to obtain the maximum thrust force for a given load distribution. We will compute the best possible yarn thickness orientation and distribution in order to minimize the total fiber volume with some displacement constraints and in order to leave the most uniform stress distribution over the whole structure. In this paper our attention will be focused on computer simulation, modeling and optimization of a sail-shape mathematical model in different regatta and wind conditions, with the purpose of improving maneuverability and speed made good.

논문 - GIS/RS를 이용한 비닐하우스 폭설 피해지역 추출 기법 연구 (Estimation of Greenhouse Damaged Area by Heavy Snowfall using GIS and Remote Sensing Technique)

  • 김샛별;신형진;윤동균;홍성욱;김성준
    • 한국관개배수논문집
    • /
    • 제18권2호
    • /
    • pp.111-121
    • /
    • 2011
  • This study is to estimate the possible damage area of greenhouse by heavy snowfall event using terra MODIS snow cover area (SCA) and the ground measured snowfall data (GMSD). For the 4 heavy snowfall events of January 2001, March 2004, December 2005 and January 2010, the areas exceeding the design criteria of snowfall depth for greenhouse breaking were extracted by coupling the MODIS SCA and GMSD. The main damaged regions were estimated as Gangwon province in 2001, Chungbuk and part of Gyeongbuk province in 2004, Jeonbuk and Jeonnam province in 2005, and Gangwon and part of Gyeonggi province in 2010 respectively. Comparing with the investigated number of greenhouse damaged data, the estimated areas reflected the statistical data except 2001. The 2001 greenhouse damages were caused by the high wind speed (35.7m/sec) together with snowfall. The results of this study can be improved if the design criteria of wind speed is added.

  • PDF

풍속변화가 컨테이너 크레인의 안전성에 미치는 영향 (The Effect of the Variation of a Wind Speed on the Stability of a Container Crane)

  • 이성욱;심재준;한동섭;한근조;김태형
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 춘계학술대회 논문집
    • /
    • pp.433-438
    • /
    • 2005
  • 본 연구에서는 풍속의 변화가 컨테이너 크레인의 안정성에 미치는 영향이 분석되었다. '항만시설장비기준 / 크레인강 구조 부분 설계 기준(KS A 1627)'과 건설교통부의 '건축물하중기준'에 의거한 풍하중이 산정되었으며, 이러한 풍하중이 컨테이너 크레인에 작용할 때, 컨테이너 크레인의 각 지지점에서 발생되는 반력을 분석함으로써 구조적 안정성을 평가하였다. 해석에 사용된 모델은 현재 항만에서 널리 사용되는 50톤급 컨테이너 크레인이다.

  • PDF

2 MW급 풍력터빈 블레이드 설계 및 단방향 유체-구조연성해석 (Design of a 2MW Blade for Wind Turbine and Uni-Directional Fluid Structure Interaction Simulation)

  • 김범석;이강수;김만응
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.1007-1013
    • /
    • 2009
  • The purposes of this study are to evaluate the power performance through CFD analysis and structural integrity through uni-directional FSI analysis in aerodynamic design and structure design of wind turbine blade. The blade was designed to generate the power of 2MW under the rated wind speed of 11 m/s, consisting of NACA 6 series, DU series and FFA series airfoil. The inside section of the blade was designed into D-spar structure and circular stiffener was placed to reinforce the structural strength in the part of hub. CFD analysis with the application of transitional turbulence model was performed to evaluate the power performance of blade according to the change of TSR and 2.024MW resulted under the condition of rated wind speed. TSR of 9 produced the maximum power coefficient and in this case, Cp was 0.494. This study applied uni-directional FSI analysis for more precise evaluation of structural integrity of blade, and the results of fiber failure, inter fiber failure and eigenvalue buckling analysis were evaluated, respectively. For the evaluation, Puck's failure criteria was applied and the result showed that fiber failure and inter fiber failure did not occur under every possible condition of the analysis. As a result, power performance and structural integrity of 2 MW blade designed in this study turned out to satisfy the initial design goals.

극치통계분석을 이용한 교량상판 풍하중에 대한 차량주행 안전도 평가 (Driving Safety Analysis for vehicles Against High Wind on the Bridges Using Extreme Value Statistics)

  • 정지승
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.112-117
    • /
    • 2010
  • This study presents a methodology to evaluate the driving safety of vehicles against localized high wind on the roads over the valleys or along the coasts. Risk level for vehicle accident is derived from the side slip caused by cross wind, and then safety criteria based on reliability for driving stability are defined. The level of safety is classified according to probability of exceeding against wind speed using the concept of extreme value statistics. To attain the safety level of vehicle on bridges, numerical simulations using Computational Fluid Dynamics(CFD) are performed. Based on this result, risk reduction and quality improvement is expected through analysis for each alternative in bridges design, construction and operation & maintenance stage with proposed process