• 제목/요약/키워드: Design by Lumped Method Analysis

검색결과 44건 처리시간 0.023초

A Study on the Design of Electromagnetic Valve Actuator for VVT Engine

  • Park, Seung-hun;Kim, Dojoong;Byungohk Rhee;Jaisuk Yoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.357-369
    • /
    • 2003
  • Electromagnetic valve (EMV) actuation system is a new technology for improving fuel efficiency and at the same time reducing omissions in internal combustion engines. It can provide more flexibility in valve event control compared with conventional variable valve actuation devices. The electromagnetic valve actuator must be designed by taking the operating conditions and engine geometry limits of the internal combustion engine into account. To help develop a simple design method, this paper presents a procedure for determine the basic design parameters and dimensions of the actuator from the relations of the valve dynamics, electromagnetic circuit and thermal loading condition based on the lumped method. To verify the accuracy of the lumped method analysis, experimental study is also carried out on a prototype actuator. It is found that there is a relatively good agreement between the experimental data and the results of the proposed design procedure. Through the whole speed range, the actuator maintains proper performances in valve timing and event control.

댐-호소-지반 계의 비선형 지진응답해석을 위한 집중변수모델 (Lumped Parameter Model for the Nonlinear Seismic Analysis of the Coupled Dam-Reservior-Soil System)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.267-274
    • /
    • 1999
  • Since the seismic response of dams can be strongly influenced by the dam-reservior interaction in needs to be taken into account in the seismic design of dams. In general a substructure method is employed to solve the dam-reservoir interaction problem in which the dam body is modeled with finite elements and the infinite region of a reservoir using a transmitting boundary. When the water is modeled as a compressible fluid the equation is formulated in frequency domain. But nonlinear behavior of dam body cannot be studied easily in the frequency domain method. In this study time domain formulation of the dam-reservoir-soil interaction is proposed based onthe lumped parameter modeling of the reservoir region, The frequency dependent dynamic-stiffness coefficients of the reservoir are converted into frequency independent lumped-parameters such as masses dampers and springs. The soil-structure interactionis modeled using lumped parameters in similar way. the ground is assumed as a visco-elastic stratum on the rigid bedrock. The dynamic stiffnesses of the rigid surface foundation are calculated using the hyperelement method and are converted into lumped parameters. The application example demonstrated that the lumped parameter model gives almost identical results with the frequency domain formulation.

  • PDF

이산요소법을 이용한 코크스 분화 거동 해석 (Analysis for Cokes Fracture Behavior using Discrete Element Method)

  • 유수현;박준영
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.75-81
    • /
    • 2012
  • The strength of lumped cokes can be represented by some index numbers. Although some indexes are suggested, these indexes are not enough to enlighten fracture mechanism. To find essential mechanism, a computational way, discrete element method, is applied to the uniaxial compression test for cylindrical specimen. The cylindrical specimen is a kind of lumped particle mass with parallel bonding that will be broken when the normal stress and shear stress is over a critical value. It is revealed that the primary factors for cokes fracture are parallel spring constant, parallel bond strength, bonding radius and packing ratio the parallel bond strength and radius of the parallel combination the packing density. Especially, parallel spring constant is directly related with elastic constant and yield strength.

집중질량을 고려한 보강된 사다리꼴 주름판의 진동해석 (Vibration Analysis of Trapezoidal Corrugated Plates with Stiffeners and Lumped Masses)

  • 정강;김영완
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.414-420
    • /
    • 2014
  • In this paper, the vibration characteristics of the trapezoidal corrugated plate with axial stiffeners and lumped masses are investigated by the analytical method. The corrugated plate can be treated as an equivalent orthotropic plate as this plate has different flexure properties in two perpendicular directions; flexible in the corrugation direction and stiff in the transverse direction. The effective extensional and flexural stiffness of the equivalent plate are considered to obtain the precise solution in the analysis. The plate is stiffened by concentric stiffeners horizontally to the corrugation direction. The discrete stiffener theory is adopted to consider the position of stiffener. To demonstrate the validity of the proposed approach, the comparison is made with the results of 3D ANSYS finite element solutions. Some numerical results are presented to check the effect of the geometric properties.

궤도 설계 동하중 산정을 위한 차량/궤도 상호작용 해석기법 개발 (Development of a Numerical Analysis Method of Train/Track Interaction for Evaluation of Dynamic Track Design Load)

  • 양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.1094-1099
    • /
    • 2002
  • In this paper, a numerical method for vehicle-track interaction analysis is developed to evaluate vertical dynamic force subjected to rail surface. A vehicle is modelled by lumped masses system and track by multi layered continuous beam system. The equation of motion of vehicle and track interaction system is derived by considering compatibility condition at the contact points between wheel and rail. The input vibration source is given by the empirical formula of power spectral density of track irregularity, which is suggested by FRA. Using this method, dynamic impact factors with the train speed are evaluated.

  • PDF

집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석 (Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model)

  • 오승훈;정재환;박병원;권용주;정동호
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.

달탐사용 탑재체 개발을 위한 전산응용 개념 설계 (CONCEPTUAL DESIGN BY APPLIED COMPUTATIONAL ENGINEERING FOR THE MOON EXPLORER PAYLOAD DEVELOPMENT)

  • 김정훈;전형열;주광혁;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.173-178
    • /
    • 2011
  • Nowadays, SELENE-2 is under development for the moon explorer rover in Japan. AXS(Active X-ray Spectrometer) sensor development among the candidated payloads will be on going by the world-wide co-operation. The thermal design, analysis and test will be specially performed by Korean institutes. CFD techniques are used for the conceptual design and analysis. Thin-shell plate meshes being applied by Monte-Carlo Ray Tracing Method are generated for the thermal radiation analysis. Lumped capacity model is employed for the thermal conduction simulation of the AXS payload itself. Various shapes of the payload configuration with thermal boundary conditions are proposed and selected on the purpose of the analysis of the initial design. The results of the analysis are supposed to be used as the baseline for the further detailed design of the AXS payload in the future.

  • PDF

정지궤도위성 전장품의 열설계 검증을 위한 최적 열해석 모델링 연구 (A Study on Optimized Thermal Analysis Modeling for Thermal Design Verification of a Geostationary Satellite Electronic Equipment)

  • 전형열;양군호;김정훈
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.526-536
    • /
    • 2005
  • A heat dissipation modeling method of EEE parts, or semi-empirical heat dissipation method, is developed for thermal design and analysis an electronic equipment of geostationary satellite. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is developed instead of conventional lumped capacity nodes. The thermal plates are projected to the printed circuit board and can be modeled and modified easily by numerically preprocessing programs according to design changes. These modeling methods are applied to the thermal design and analysis of CTU (Command and Telemetry Unit) and verified by thermal cycling and vacuum tests.

집중계 해석법을 이용한 달 표면온도 예측 (Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method)

  • 김택영;이장준;장수영;김정훈;현범석;전형열;허행팔
    • 한국항공우주학회지
    • /
    • 제46권4호
    • /
    • pp.338-344
    • /
    • 2018
  • 달 주위를 공전하는 탐사위성이나 달착륙선 및 월면차의 열설계에 필요한 환경 인자로써 달 표면온도가 중요하며, 본 연구에서는 에너지방정식을 단순화한 집중계 해석모델을 통하여 온도를 예측하였다. 에너지방정식의 해석에 필요한 물리적 값들은 기하학적 형상을 고려하여 유도하고, 기존의 연구결과에 제시된 값들을 사용하였다. 달 표토층의 가장 중요한 열적 물성치인 면적비열은 LRO에 탑재된 Diviner의 측정온도 분석을 통하여 추출하였으며, 해석모델에 적용함으로써 값을 추정하였다. 수치적분을 통하여 예측한 달 표면온도 분포는 달탐사위성 등의 열설계에 적용할 수 있을 정도의 충분한 정확도를 갖으며, 본 연구에서 제시한 방법을 심화시킨다면 더욱 정확한 온도예측이 가능할 것이다.

인공위성 전장품의 열설계 검증을 위한 해석 및 실험적 연구 (An Analysis and Experimental Study for Thermal Design Verification of Satellite Electronic Equipment)

  • 김정훈;전형열;양군호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.91-95
    • /
    • 2005
  • A heat dissipation modeling method of EEE parts is developed for thermal design and analysis of an satellite electronic equipment. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is developed instead of conventional lumped capacity nodes. The thermal plates are projected to the printed circuit board and can be modeled and modified easily by numerically preprocessing programs according to design changes. These modeling methods are applied to the thermal design and analysis of CTU and verified by thermal cycling and vacuum tests.

  • PDF