• Title/Summary/Keyword: Design Ultimate Load

Search Result 510, Processing Time 0.023 seconds

Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads (콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증)

  • Nam, Jeong-Hee;Kim, Woo Seok;Kim, Ki Hyun;Kim, Yeon Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

Multi-MW Class Wind Turbine Blade Design Part I : Aero-Structure Design and Integrated Load Analysis (Multi-MW급 풍력발전용 블레이드 설계에 관한 연구 Part I : 공력-구조 설계 및 통합하중해석)

  • Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.289-309
    • /
    • 2014
  • A rotor blade is an important device that converts kinetic energy of wind into mechanical energy. Rotor blades affect the power performance, energy conversion efficiency, and loading and dynamic stability of wind turbines. Therefore, considering the characteristics of a wind turbine system is important for achieving optimal blade design. This study examined the general blade design procedure for a wind turbine system and aero-structure design results for a 2-MW class wind turbine blade (KR40.1b). As suggested above, a rotor blade cannot be designed independently, because its ultimate and fatigue loads are highly dependent on system operating conditions. Thus, a reference 2-MW wind turbine system was also developed for the system integrated load calculations. All calculations were performed in accordance with IEC 61400-1 and the KR guidelines for wind turbines.

Development of Ultimate Strength Design Formula considering Buckling under Longitudinal and Transverse Axial Compressive Load (종횡방향 압축하중을 받는 유공판의 최종강도 설계식 개발)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.173-179
    • /
    • 2006
  • A number of perforated plates are utilized for the passage of the crew and the equipment, reducing weight and the arrangement of piping. Hull girders in double bottom and floor plates are the typical parts which have those plates in a ship structure, and the perforated plate is usually positioned at the place which has less loading without local strength problems. In the case of utilizing the plate inevitably at the place which has large strength, an opening of the plate has large effect on the buckling strength due to in-plane rigidity and ultimate strength. Therefore the assessments of the elastic buckling strength and the ultimate strength for the perforated plate are the essential requirements for determining the dimensions of the parts at the initial design stage. With above reason, a need of the reasonable assessments for the elastic buckling strength and the ultimate strength has evolved. The numerical series analysis with the consideration of the effect due to various aspect ratios and slenderness ratios were performed using finite element method in this research. Simple formulas for the design are also proposed from the above analysis.

Experimental research on seismic behavior of a composite RCS frame

  • Men, Jinjie;Zhang, Yarong;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.971-983
    • /
    • 2015
  • To promote greater acceptance and use of composite RCS systems, a two-bay two-story frame specimen with improved composite RCS joint details was tested in the laboratory under reversed cyclic loading. The test revealed superior seismic performance with stable load versus story drift response and excellent deformation capacity for an inter-story drift ratio up to 1/25. It was found that the failure process of the frame meets the strong-column weak-beam criterion. Furthermore, cracking inter-story drift ratio and ultimate inter-story drift ratio both satisfy the limitation prescribed by the design code. Additionally, inter-story drift ratios at yielding and peak load stage provide reference data for Performance-Based Seismic Design (PBSD) approaches for composite RCS frames. An advantage over conventional reinforced concrete and steel moment frame systems is that the displacement ductility coefficient of the RCS frame system is much larger. To conclude, the test results prove that composite RCS frame systems perform satisfactorily under simulated earthquake action, which further validates the reliability of this innovative system. Based on the test result, some suggestions are presented for the design of composite RCS frame systems.

Safety Evaluation Method of Transmission Tower Subjected to Special Load Case According to Broken Wires (전력선 단선으로 인한 이상시 송전철탑의 안전성 평가방법)

  • Jin, Seok Won;Kim, Jong Min;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.131-149
    • /
    • 2008
  • A transmission tower was designed according to general and special load cases based on KEPCO Design Specifications. The special load case such as unbalanced load a cording to some broken wires has not been considered significantly. Therefore, this paper presents investigations on the stability and safety of main post members subjected to unbalanced load and design wind load. In this study, all cases totally considered. From the finite element analyses using LUSAS program, the stresses on the tower subjected to unbalanced load and design wind load were very high in comparison to the allowable stresses of the steel post member that was used. Some of the post member had higher stresses than the yield stress of the steel member. This paper also shows an example to improve the capacity of the post members using increased cross-section members. Based on the analyses results, when investigating the safety of the transmission tower, one must consider thenew design philosophy including ultimate strength of the member and reliability of the special loading cases.

Characteristics of Bearing Capacity and Reliability-based Evaluation of Pile-Driving Formulas for H Pile (H-pile의 지지력 특성 및 동역학적 공식의 신뢰도 평가)

  • 오세욱;이준대
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • Recently, pile foundations were constructed in rough or soft ground than ground of well condition thus it is important that prediction of ultimate bearing capacity and calculation of proper safety factor applied pile foundation design. This study were performed to dynamic loading tests for the thirty two piles at four different construction sites and selected pile at three site were performed to static loading tests and then compare with measured value and value of static and dynamic loading tests. The load-settlement curve form the dynamic loading tests by CAPWAP was very similar to the results obtained from the static load tests. Based on dynamic and static loading tests, the reliability of pile-driving formula were analyzed and then suggested with proper safety factor for prediction of allowable bearing capacity in this paper.

Nonlinear response of laterally loaded rigid piles in sand

  • Qin, Hongyu;Guo, Wei Dong
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.679-703
    • /
    • 2014
  • This paper investigates nonlinear response of 51 laterally loaded rigid piles in sand. Measured response of each pile test was used to deduce input parameters of modulus of subgrade reaction and the gradient of the linear limiting force profile using elastic-plastic solutions. Normalised load - displacement and/or moment - rotation curves and in some cases bending moment and displacement distributions with depth are provided for all the pile tests, to show the effect of load eccentricity on the nonlinear pile response and pile capacity. The values of modulus of subgrade reaction and the gradient of the linear limiting force profile may be used in the design of laterally loaded rigid piles in sand.

Nonlinear Analysis of Concrete Filled Steel Tubular Column under Concentric Axial Load (중심축력하의 콘크리트 충전 각형강관 기둥의 비선형 해석)

  • 김선웅;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.613-616
    • /
    • 2003
  • Steel-concrete composite columns are used extensively in modern buildings. Extensive research on composite columns in which structural steel are in concrete have been carried out. In-filled composite columns, however have received limited attention compared to encased columns. In this paper, interrelationship of parameters is examined into analyzing and comparing with data through ABAQUS program and experiment on concrete filled tubular column under axial load and propriety of model is checked out by FEM analysis. The main variations of this paper are width-thickness ratio of the section(B/t =33.3, 38.9, 44.4), concrete strength($f_{ck}$=240, 360kgf/$\textrm{cm}^2$), and width-length ratio($L_o$/B=8.0, 10.0, 12.0, 15.0, 20.0). The ultimate value obtained through analysis is compared with test value and calculated by design code of other countries and previous studies.

  • PDF

Strengthening of preloaded RC columns by post compressed plates-a review

  • Wang, L.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.477-490
    • /
    • 2018
  • Reinforced concrete (RC) columns, as the primary load-bearing structural components in buildings, may need to be strengthened due to material deteriorations, changes in usage, new building codes or new design requirements. The use of post compressed plates (PCP) to strengthen existing RC columns has been proven experimentally and practically to be effective in solving stress-lagging effects between the original column and the new strengthening jacket caused by the pre-existing loads. This paper presents a comprehensive summary and review of PCP strengthening techniques to strengthen preloaded RC columns. The failure mode, deformability, and ductility of the strengthened RC columns are reviewed.

Static Strength Evaluation Equations of ㄱType Perfobond Rib Shear Connectors (ㄱ형 perfobond 리브 전단열결재의 정적 강도평가식)

  • Lee Heung-Su;Chung Chul-Hun;Sohn You-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.451-454
    • /
    • 2005
  • The ㄱ type perfobond rib shear connector is a ㄱ type flat steel plate with a number of holes punched through. This connector can be effectively used in girder with high shear. The ㄱ type perfobond rib shear connector exhibit very stiff behaviour under service load conditions and also had the characteristic of retaining a significant amount of load after the attainment of ultimate capacity. A regression analysis, which is based on a model that takes into account the contributions of concrete dowels formed by the rib holes, the transverse reinforcement, the strength of concrete in front of the rib, and the ㄱ type plate as well as a nonlinear finite element analysis, is used in the derivation. An empirical equation for the design of ㄱ type perfobond rib shear connector is proposed.

  • PDF