• Title/Summary/Keyword: Design Ultimate Load

Search Result 510, Processing Time 0.025 seconds

Design versus Ultimate Behavior of Reinforced Concrete Hyperbolic Paraboloid Saddle Shell (철근콘크리트 쌍곡 '안장' 쉘의 설계 예와 극한거동)

  • Min, Chang Shik;Gupta, Ajaya K.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.807-814
    • /
    • 1994
  • One case of pointwise limit design is performed for a hyperbolic paraboloid saddle shell(originally used by the Lin-Scordelis) to check the design strength against a consistent design loads, therefore, to verify the adequacy of current design practice for reinforced concrete shells. The design method which was based on stresses from membrane analysis in conjunction with pointwise limit state design equations shows a good performance, which means that the design method gives a lower bound on the ultimate load. This shows the adequacy of the current practice at least for this saddle shell case studied. To generalize the conclusion many more designs-analyses are performed with different shell configurations.

  • PDF

Test Results and Nonlinear Analysis of RC T-beams Strengthened by Bonded Steel Plates

  • Ren, Wei;Sneed, Lesley H.;Gai, Yiting;Kang, Xin
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • This paper describes the test results and nonlinear analysis of reinforced concrete T-beams strengthened by bonded steel plates under increasing static loading conditions. The first part of this paper discusses the flexural tests on five T-beams, including the test model design (based on similarity principles), test programs, and test procedure. The second part discusses the nonlinear numerical analysis of the strengthened beams, in which a concrete damage plasticity model and a cohesive behavior were adopted. The numerical analysis results are compared with experimental data and show good agreement. The area of bonded steel plate and the anchor bolt spacing were found to have an impact on the cracking load, yield load, and ultimate load. An increase in the area of steel plate and a reduction of the anchor spacing could significantly improve the cracking and ultimate loads and decrease the damage of the beam.

The structural performance of axially loaded CFST columns under various loading conditions

  • Huang, Fuyun;Yu, Xinmeng;Chen, Baochun
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.451-471
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have been used widely in high-rise buildings and bridges due to the efficiency of structurally favourable interaction between the steel tube and the concrete core. In the current design codes only one loading condition in the column members is considered, i.e., the load is applied on the steel tube and concrete core at the same time. However, in engineering practice the tube structures may be subjected to various loading conditions such as loading on the concrete core only, preloading on the steel tube skeleton before filling of concrete core, and so on. In this research, a series of comparative experiments were carried out to study the structural performance of concrete filled circular steel tube columns subject to four concentric loading schemes. Then, a generalized prediction method is developed to evaluate the ultimate load capacity of CFST columns subject to various loading conditions. It is shown that the predictions by the proposed method agree well with test results.

Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber

  • Chen, Juan;Liu, Xuan;Liu, Hongwei;Zeng, Lei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • This paper presents an experimental work for short circular steel tube columns filled with normal concrete (NAC), recycled aggregate concrete (RAC), and RAC with silica fume and steel fiber. Ten specimens were tested under axial compression to research the effect of silica fume and steel fiber volume percentage on the behavior of recycled aggregate concrete-filled steel tube columns (RACFST). The failure modes, ultimate loads and axial load- strain relationships are presented. The test results indicate that silica fume and steel fiber would not change the failure mode of the RACFST column, but can increase the mechanical performances of the RACFST column because of the filling effect and pozzolanic action of silica fume and the confinement effect of steel fiber. The ultimate load, ductility and energy dissipation capacity of RACFST columns can exceed that of corresponding natural aggregate concrete-filled steel tube (NACFST) column. Design formulas EC4 for the load capacity NACFST and RACFST columns are proposed, and the predictions agree well with the experimental results from this study.

A Study on the Bending Performance of Structural Size Lumbers Using the ANSYS (ANSYS를 이용한 실대재의 휨특성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • In our country, domestic species can not be used as a structural member because we have not yet grading system. So, to utilize as a basic data of grading system, bending test and numerical modelling on structural member were conducted in this study. 35 of Douglas-fir, 2" ${\times}$ 6", span 2.4 m were tested for the bending properties, and Ansys software was used to analyze the numerical modelling on the structural members. The data of knots were inspected and applied in numerical modelling. To obtain the accuracy of analysis, nonlinear numerical analysis was carried out instead of linear numerical analysis. Ultimate load had a wide range from 4883N to 11,738 N, and maximum deformation also had a range from 26 mm to 68 mm. Average of ultimate load was 8,616 N, and that of maximum deformation was 48 mm. The distinctive features of failure types were simple tension type and cross-grain tension type. Ulitmate load and maximum deformation from numerical modelling were 7,504 N and 37 mm. The numerical modelling drawn by this study is available to all species, and reasonable prediction on the bending performance is possible with only some material properties.

  • PDF

Numerical Model for the Estimation of Ultimate Load Capacity of CFT Columns Considering Time-dependent Behavior (시간 의존적 거동을 고려한 CFT 기둥의 극한 하중 계산을 위한 수치 해석 모델 제안)

  • Seong Hun Kim;Hyo-Gyoung Kwak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • This paper introduces a numerical analysis model capable of evaluating CFT (Concrete-Filled Tube) columns across all time stages, incorporating creep behavior analysis and inelastic analysis to account for time-dependent behavior. The proposed model is compared with experimental results, revealing that the numerical model presented in this paper demonstrates more accurate trends than existing design criteria. Following verification, a numerical analysis is conducted for each slenderness ratio, determining the ultimate load capacity and examining the short-term and long-term sustained load behavior of the overall CFT column members.

A Study on Reliability of Current Ultimate Strength Design for Reinforced Concrete (현행(現行) 철근(鐵筋)콘크리트 극한강(極限强) 설계법(設計法)의 신뢰성(信賴性)에 관(關)한 연구(硏究))

  • Lee, Bong Hak
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.3-11
    • /
    • 1982
  • Reliability analysis methods have been employed in this study to determine the safety index ${\beta}$ for flexure associated with reinforced concrete designs that are in accordance with current USD code of Korea. In reliability analysis, the mean first-order second-moment methods are employed. The following specific conclusions can be drawn from this study; 1) Levels of safety for reinforced concrete design, measured by ${\beta}$, vary from 2.8 to 3.8 in flexure depending on the limit state, the ratio of live load to dead load and the uncertainties. 2) Target reliability ${\beta}$ associated with reinforced concrete beams in flexure is assumed to be 3.5~4.0 in Korea. 3) Load factors and resistance factors in flexure associated with the current provisions contained in USD code generally seem to be too high. The writer concluded the factors as following; ${\phi}=0.8,\;{\gamma}_D=1.1\;{\gamma}_L=1.75$.

  • PDF

Decentralized Load-Frequency Control of Large-Scale Nonlinear Power Systems: Fuzzy Overlapping Approach

  • Lee, Ho-Jae;Kim, Do-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.436-442
    • /
    • 2012
  • This paper develops a design methodology of a decentralized fuzzy load-frequency controller for a large-scale nonlinear power system with valve position limits on governors. The concerned system is locally exactly modeled in Takagi-Sugeno's form. Sufficient design condition for uniform ultimate boundedness of the closed-loop system is derived based on the overlapping decomposition. Convergence of all incremental frequency deviations to zero is also investigated. A simulation result is provided to visualize the effectiveness of the proposed technique.

Experimental investigation on the shear capacity of RC dapped end beams and design recommendations

  • Wang, Quanfeng;Guo, Zixiong;Hoogenboom, Pierre C.J.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.221-235
    • /
    • 2005
  • In this paper, the shear resistance behaviour of reinforced concrete (RC) dapped end beams is investigated by 24 tests until failure load. The main parameters considered are the dapped end height, the type and effective range to provided the stirrups and the bent form of the longitudinal reinforcement. The failure behaviour of dapped end beams is presented and some conclusions are given. Inclined stirrups and longitudinal bent reinforcement have more influence on the shear capacity than vertical stirrups. Additionally, the shear mechanism of dapped end beams is analysed. Relatively simple semi-empirical equations for shear strength have been derived based on the results of 22 dapped end beams. The predicted results are in close agreement with the experimental ones. Finally, some design suggestions for the ultimate shear strength of dapped end beams are presented.

Inelastic Behavior of the SRC Column (SRC 합성교각의 비탄성 거동)

  • Jung, In-Keun;Min, Jin;Shim, Chang-Su;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF