• 제목/요약/키워드: Design Shape

검색결과 8,026건 처리시간 0.033초

민감도기법과 RSM을 이용한 대용량 BLDC 전동기 영구자석의 형상 최적화 (A Magnet Pole Shape Optimization of a Large Scale BLDC Motor Using a RSM With Design Sensitivity Analysis)

  • 신판석;정현구;우성현
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.735-741
    • /
    • 2009
  • This paper presents an algorithm for the permanent magnet shape optimization of a large scale BLDC(Brushless DC) motor to minimize the cogging torque. A response surface method (RSM) using multiquadric radial basis function is employed to interpolate the objective function in design parameter space. In order to get a reasonable response surface with relatively small number of sampling data points, additional sampling points are added on the basis of design sensitivity analysis computed by using FEM. The algorithm has 2 stages: the first stage is to determine the PM arc angle, and the 2nd stage is to optimize the magnet pole shape. The developed algorithm is applied to a 5MW BLDC motor to get a minimum cogging torque. After 3 iterations with 4 design parameters, the cogging torque is reduced to 13.2% of the initial one.

코깅 토오크 저감을 위한 Spoke형 BLDC 전동기의 회전자 극 형상설계에 관한 연구 (Rotor Pole Shape Design for Reducing a Cogging Torque in Spoke Type BLDC Motor)

  • 황규윤;이상봉;양병열;권병일
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.860-868
    • /
    • 2007
  • In this paper. design of spoke type BLDC motor which have a characteristics of concentrating fluxes and relatively high reluctance torque among IPM BLDC motors has been researched. To reduce cogging torque and torque ripple. rotor pole shape of optimal design is proposed. To clearly see the effects due to the changed rotor pole shape. magnetic circuit model. 2D FEM and design of experiments (DOE) are used. Then considering these results proper rotor pole shape which have an good effect on air gap flux density and cogging torque. back-emf is designed. Moreover. the validity of proposed model in this paper is also verified by comparison between gained experiment and analysis data.

펀치 형상에 따른 Housing Lower 최적 공정 설계 (Optimal Design of the Punch Shape for a Housing Lower)

  • 박세제;박민철;김동환
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.332-339
    • /
    • 2015
  • In the current paper, a cold forging sequence was developed to manufacture a precisely cold forged H/Lower, which is used as the air back unit in commercial automobiles. The preform shape of the H/Lower influences the dimensional accuracy and stiffness of the final product. The shape factor (SF) ratio and shape of the tools are considered as the design parameters to achieve adequate backward extrusion height and maintain appropriate thickness variations. The optimal conditions of the design parameters were determined by using an artificial neural network (ANN). To experimentally verify the optimal preform and tool shapes, the experiments of the backward extrusion of the H/Lower were executed. The process design methodology proposed in the current paper, can provide a more systematic and economically feasible means for designing the preform and tool shapes for cold forging.

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.

Aerodynamic Design of the KARI Mid-sized Aerostat

  • Huh, Lynn;Park, Young-Min;Chang, Byeong-Hee;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.43-53
    • /
    • 2006
  • Aerodynamic shape design of the Mid-sized Aerostat was performed with computational fluid dynamics. Design procedure included determination of hull volume and length, hull shape, tailfin configuration with anhedral and location, tailfin section. For aerodynamic analysis, three dimensional Navier-Stokes equations were applied with Spalart-Allmaras turbulence model. During design procedure, static moment derivatives were mainly considered for the stability of aerostat and structural limitations were also considered for practical application of the designed shape. Aerodynamic analysis of the designed aerostat was carried out and aerodynamic characteristics were compared with those of the TCOM 71m aerostat, one of the most successful commercial aerostats. It was found that the designed KARI Mid-sized Aerostat had better stability characteristics compared to the TCOM 71m aerostat.

TG-CVI용 히터 형상설계 및 최적화 (Design and Optimization of TG-CVI Heater)

  • 이성호;홍성석;구형회
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.244-249
    • /
    • 2000
  • Thermal gradient chemical vapor infiltration (TG-CVI) process, which is one of the CVI techniques to densify a porous fiber preform, requires for a heater to have uniform surface temperature distribution. Thus, it is essential to design the shape of the heater and to predict the temperature distribution when the heater has a profile which is not a simple cylinder. In this study, an analytical method has been used to design the inner profile of a conical heater showing uniform temperature distribution, if its outer shape is specified. Temperature distribution on the heater surface has been calculated with the finite difference method and compared with the experimental results. When a heater had a combined profile with a large cone and a small cylinder, temperature was higher in the cylindrical part. To reduce the temperature difference between these areas, a hole-machining method has been proposed including other possible ones. A shape design and optimization program has been made to improve the temperature uniformity of the TG-CVI heater better than that designed with the analytical method.

  • PDF

일반 평면 아치 구조물의 형상설계민감도 해석 및 최적설계 (Shape Design Sensitivity Analysis and Optimization of General Plane Arch Structures)

  • 최주호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.238-245
    • /
    • 2000
  • A general formulation for shape design sensitivity analysis over a plane arch structure is developed based on a variational formulation of curved beam in linear elasticity. Sensitivity formula is derived using the material derivative concept and adjoint variable method for the stress defined at a local segment. Obtained sensitivity expression, which can be computed by simple algebraic manipulation of the solution variables, is well suited for numerical implementation since it does not involve numerical differentiation. Due to the complete description for the shape and its variation of the arch, the formulation can manage more complex design problems with ease and gives better optimum design than before. Several examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. Shape optimization is also conducted with two design problems to illustrate the excellent applicability.

  • PDF

한국전통문양에 대한 현대인의 의미해석과 태도 - 조선시대 상류주택에 나타난 문양을 중심으로 - (The Modern Meanings and Attitudes of the Traditional Motives in Upper - Class Houses of Chosun Dynasty -)

  • 박영순;김미경;김수진;호수진;최선미
    • 한국실내디자인학회논문집
    • /
    • 제29호
    • /
    • pp.43-50
    • /
    • 2001
  • The purpose of this study is to investigate the modern meanings and attitudes of the motives shown in the traditional houses. Research methods to achieve this purpose are review of literature and the Questionnaire survey. The major results of this study are as follows; First, The interpretation of the modern meanings of the traditional motives were mainly affected by 'the forms and shapes of the motives rather than 'the meanings and symbols of the motives'. Second, many people felt friendly, preferable to use the motives in modern design, decorative and good-meaningful about the motives. Through this results related to the attitudes of the motives, each motive should be developed by new design and needed the modification.; Especially, 'flower-shape', '亞-shape', '正-shape', '喜-shape'were good motives to use in modem exterior and interior design.

  • PDF

Boundary Method for Shape Design Sensitivity Analysis in Solving Free-Surface Flow Problems

  • Choi Joo Ho;Kwak H. G.;Grandhi R. V.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2231-2244
    • /
    • 2005
  • An efficient boundary-based optimization technique is applied in the numerical computation of free surface flow problems, by reformulating them into the equivalent optimal shape design problems. While the sensitivity in the boundary method has mainly been calculated using the boundary element method (BEM) as an analysis means, the finite element method (FEM) is used in this study because of its popularity and easy-to-use features. The advantage of boundary method is that the design velocity vectors are needed only on the boundary, not over the whole domain. As such, a determination of the complicated domain design velocity field, which is necessary in the domain method, is eliminated, thereby making the process easy to implement and efficient. Seepage and supercavitating flow problem are chosen to illustrate the accuracy and effectiveness of the proposed method.

SHAPE 알고리즘을 이용한 사인파 주파수 변조 펄스의 상호간섭 억제 (Mutual interference suppression of the sinusoidal frequency modulated pulse using SHAPE algorithm)

  • 김근환;이동화
    • 한국산업정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.49-59
    • /
    • 2022
  • SHAPE 알고리즘은 펄스의 스펙트럼 형태를 원하는 대로 성형하면서, 이 외의 특성에는 왜곡을 발생시키지 않도록 설계할 수 있다는 장점이 있어 기존의 능동소나 펄스 설계에 활용되었다. 본 논문에서는 다중상태 소나 시스템을 위한 펄스를 설계할 때, 주파수 대역에서 인접한 펄스 간의 상호상관도를 감소시키면서도 펄스 자체의 성능 저하를 방지하기 위해 SHAPE 알고리즘을 적용한 펄스 신호 설계 기법을 제안한다. 이를 위해서 SHAPE 알고리즘의 경계함수를 펄스 대역폭으로 제한하도록 설정하였다. 제안하는 설계 기법을 사인화 주파수 변조 펄스 신호에 적용한 결과 상호상관도를 의미하는 peak cross-correlation level (PCCL)이 44.23 dB 감소하였다. PCCL이 수십 dB 감소하였음에도 모호성 함수의 변화가 크게 관찰되지 않았으며, 부엽의 평균값을 의미하는 integrated sidelobe level (ISL)이 11.64 dB 증가하였다.