• Title/Summary/Keyword: Design Scenario

Search Result 1,026, Processing Time 0.03 seconds

Trigeneration Based on Solid Oxide Fuel Cells Driven by Macroalgal Biogas (거대조류 바이오가스를 연료로 하는 고체산화물 연료전지를 이용한 삼중발전)

  • Effendi, Ivannie;Liu, J. Jay
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.96-101
    • /
    • 2020
  • In this paper, the commercial feasibility of trigeneration, producing heat, power, and hydrogen (CHHP) and using biogas derived from macroalgae (i.e., seaweed biomass feedstock), are investigated. For this purpose, a commercial scale trigeneration process, consisting of three MW solid oxide fuel cells (SOFCs), gas turbine, and organic Rankine cycle, is designed conceptually and simulated using Aspen plus, a commercial process simulator. To produce hydrogen, a solid oxide fuel cell system is re-designed by the removal of after-burner and the addition of a water-gas shift reactor. The cost of each unit operation equipment in the process is estimated through the calculated heat and mass balances from simulation, with the techno-economic analysis following through. The designed CHHP process produces 2.3 MW of net power and 50 kg hr-1 of hydrogen with an efficiency of 37% using 2 ton hr-1 of biogas from 3.47 ton hr-1 (dry basis) of brown algae as feedstock. Based on these results, a realistic scenario is evaluated economically and the breakeven electricity selling price (BESP) is calculated. The calculated BESP is ¢10.45 kWh-1, which is comparable to or better than the conventional power generation. This means that the CHHP process based on SOFC can be a viable alternative when the technical targets on SOFC are reached.

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

Design and Implementation of an Access Control System Based on GeoXACML (GeoXACML 기반의 접근 제어 시스템 설계 및 구현)

  • Ban, Hyun O;Shin, In Su;Kim, Jeong Joon;Han, Ki Joon
    • Spatial Information Research
    • /
    • v.21 no.4
    • /
    • pp.15-24
    • /
    • 2013
  • Recently, as the spatial information and various multimedia are fused together, the demand for the high value-added spatial information contents and the necessity of technology for spatial information security are increasing. However, since the current security policy is being managed independently by each system, there is a problem with unreliable or costly to modify or revise the security policy. Such problems occur frequently in the process of coordination or integration of the spatial information management systems that are used in public institutions and private companies. Therefore, in this paper, the access control system that could provide an integrated security policy for many spatial platforms and systems with expandable grammar and semantics was designed and implemented based on GeoXACML proposed by OGC. As the GeoXACML-based access control system designed and implemented in this paper follows the international standard specifications, it provides high portability and interoperability. Finally, in this paper, the efficiency of the system was proved by applying it to a virtual scenario on the military area requiring the access control.

A Study on the Driver's Preferences of Prividing Direction Information in Road Signs (방향표지 정보제공 방법에 대한 운전자 선호도 연구)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.69-76
    • /
    • 2015
  • Although traffic information has been actively analyzed using big data, it has not been used as much with the consideration of driver characteristics. Among the various types of information, road signs can directly affect the driver. Road signs must provide the optimal information that enables drivers to reach their destinations with ease as well as information suitable for navigation systems. However, present road sign rules provide standardized information, regardless of the road type or size. This study suggests a method for providing road information that will help drivers determine their behavior. First, the minimum character size that can be used on a road sign for each design speed was obtained with respect to the visibility and decipherability of a road sign. Instead of conventional diagram-based direction guidance, a scenario using split-based direction guidance was created. To verify the effectiveness of the provided information, a three-dimensional simulated road environment was constructed, and a driving simulator was used for the test. At a simple plane intersection, the driver was not greatly influenced by directional guidance, but at a complex, three-dimensional intersection, the driver preferred summary-based directional guidance, which is instinctive guidance, over diagram-based guidance. On the basis of the test results, a secondary verification test that applied split-based guidance at a three-dimensional intersection confirmed that the driver had no problems in making decisions.

Development of flood inundation area GIS database for Samsung-1 drainage sector, Seoul, Korea (서울 삼성 1분구에 대한 침수면적 GIS 데이터베이스 구축)

  • Oh, Minkwan;Lee, Dongryul;Kwon, Hyunhan;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.981-993
    • /
    • 2016
  • This study explains the GIS database of flood inundation area developed for Samsung-1 Drainage Sector, Seoul, Korea. The XP-SWMM dual drainage model was developed for the study area, and the time series observed at the watershed outlet was used to obtain the watershed time of concentration and to calibrate the XP-SWMM model. The rainfall scenario was developed by dividing the 40 minute watershed time of concentration into two 20-minute time steps and then applying the gradually increasing 5 mm/hr interval rainfall intensity to each of the time step up to 200 mm/hr, which is the probable maximum precipitation of the study area. The developed rainfall scenarios was used as the input of the XP-SWMM model to obtain the database of the flood inundation area. The analysis on the developed GIS database revealed that: (1) For the same increment of the rainfall, the increase of the flooded area can be different, and this was caused by topographic characteristics and spatial formation of pipe network of the study area; (2) For the same flooded area, the spatial extent can be significantly different depending on the temporal distribution of rainfall; and (3) For the same amount of the design rainfall, the flood inundation area and the extent can be significantly different depending on the temporal distribution of rainfall.

The Effect of the Satisfaction after Consumption and Consumer Self-Confidence for Hedonic Products on Transaction Coupling (소비 후 만족도와 소비자 자신감이 거래 커플링에 미치는 영향 - 쾌락적 제품을 중심으로 -)

  • Kang, Seong-Min;Kang, Hyun-Mo
    • CRM연구
    • /
    • v.4 no.2
    • /
    • pp.1-17
    • /
    • 2011
  • In the study of transaction coupling and consumer behavior it is argued that the satisfaction after consumption and consumer self-confidence would affect the degree of transaction coupling. Based on Kivetz(1999), this study expand transaction coupling which is a mental accounting process. Satisfaction after consumption and consumer self-confidence have been frequently cited as a key construct for predicting various consumer-related behaviors. The purpose of this research is to examine the effect of satisfaction after consumption and consumer self-confidence for hedonic products on transaction coupling. In order to explain the impact of consumer self-confidence clearly, the authors used a five-factor(i.e., information acquisition, consideration-set formation, personal and social outcomes, persuasion knowledge and marketplace interfaces). Using the scenario about baseball game, the authors manipulated the consumer satisfaction after consumption (satisfaction vs. dissatisfaction) between-subjects design. And consumer self-confidence was measured based on Bearden et al.(2001). The results of experimental study showed that the main effects of satisfaction after consumption is significant. The larger consumer satisfaction after consumption reflected a higher degree of transaction coupling. The 2-way interaction between satisfaction after consumption and consumer self-confidence is also significant. Specifically, the transaction coupling differentiation from satisfaction after consumption tends to be larger at high consumer-self confidence than at low one.

  • PDF

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario (폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Cho, Chul-Min;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.673-683
    • /
    • 2016
  • In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.

A Tree-Based Routing Algorithm Considering An Optimization for Efficient Link-Cost Estimation in Military WSN Environments (무선 센서 네트워크에서 링크 비용 최적화를 고려한 감시·정찰 환경의 트리 기반 라우팅 알고리즘에 대한 연구)

  • Kong, Joon-Ik;Lee, Jae-Ho;Kang, Ji-Heon;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.637-646
    • /
    • 2012
  • Recently, Wireless Sensor Networks (WSNs) are used in many applications. When sensor nodes are deployed on special areas, where humans have any difficulties to get in, the nodes form network topology themselves. By using the sensor nodes, users are able to obtain environmental information. Due to the lack of the battery capability, sensor nodes should be efficiently managed with energy consumption in WSNs. In specific applications (e.g. in intrusion detections), intruders tend to occur unexpectedly. For the energy efficiency in the applications, an appropriate algorithm is strongly required. In this paper, we propose tree-based routing algorithm for the specific applications, which based on the intrusion detection. In addition, In order to decrease traffic density, the proposed algorithm provides enhanced method considering link cost and load balance, and it establishes efficient links amongst the sensor nodes. Simultaneously, by using the proposed scheme, parent and child nodes are (re-)defined. Furthermore, efficient routing table management facilitates to improve energy efficiency especially in the limited power source. In order to apply a realistic military environment, in this paper, we design three scenarios according to an intruder's moving direction; (1) the intruder is passing along a path where sensor nodes have been already deployed. (2) the intruders are crossing the path. (3) the intruders, who are moving as (1)'s scenario, are certainly deviating from the middle of the path. In conclusion, through the simulation results, we obtain the performance results in terms of latency and energy consumption, and analyze them. Finally, we validate our algorithm is highly able to adapt on such the application environments.

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

A risk management system applicable to NATM tunnels: methodology development and application (NATM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Lee, Kang-Hyun;Kim, Byung-Kyu;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.155-170
    • /
    • 2020
  • In this paper, a risk management system applicable to NATM tunneling projects is proposed. After investigating case histories in NATM tunnel collapse, this paper analyzes the potential risk factors and their corresponding risk events during NATM tunnel construction. The risk factors are categorized into three groups: geological, design and construction risk factors. The risk events are also categorized into four types: excessive deformation, excessive deformation with subsidence, collapse inside tunnels, and collapse inside tunnels with subsidence. The paper identifies risk scenarios in consideration of the risk factors and proposes a risk analysis/evaluation method for the NATM tunnel risk scenarios. Based on the evaluation results, the optimal mitigation measure to handle the risk events is suggested. In order to effectively facilitate a series of risk management processes, it is necessary to develop a risk register and a management ledger for risk mitigation measures that are customized to NATM tunnels. Lastly, the risk management for an actual NATM tunnel construction site is performed to verify the validity of the proposed system.