DOI QR코드

DOI QR Code

Trigeneration Based on Solid Oxide Fuel Cells Driven by Macroalgal Biogas

거대조류 바이오가스를 연료로 하는 고체산화물 연료전지를 이용한 삼중발전

  • Effendi, Ivannie (Department of Chemical Engineering, Pukyong National University) ;
  • Liu, J. Jay (Department of Chemical Engineering, Pukyong National University)
  • ;
  • 유준 (부경대학교 화학공학과)
  • Received : 2020.06.08
  • Accepted : 2020.06.23
  • Published : 2020.06.30

Abstract

In this paper, the commercial feasibility of trigeneration, producing heat, power, and hydrogen (CHHP) and using biogas derived from macroalgae (i.e., seaweed biomass feedstock), are investigated. For this purpose, a commercial scale trigeneration process, consisting of three MW solid oxide fuel cells (SOFCs), gas turbine, and organic Rankine cycle, is designed conceptually and simulated using Aspen plus, a commercial process simulator. To produce hydrogen, a solid oxide fuel cell system is re-designed by the removal of after-burner and the addition of a water-gas shift reactor. The cost of each unit operation equipment in the process is estimated through the calculated heat and mass balances from simulation, with the techno-economic analysis following through. The designed CHHP process produces 2.3 MW of net power and 50 kg hr-1 of hydrogen with an efficiency of 37% using 2 ton hr-1 of biogas from 3.47 ton hr-1 (dry basis) of brown algae as feedstock. Based on these results, a realistic scenario is evaluated economically and the breakeven electricity selling price (BESP) is calculated. The calculated BESP is ¢10.45 kWh-1, which is comparable to or better than the conventional power generation. This means that the CHHP process based on SOFC can be a viable alternative when the technical targets on SOFC are reached.

이 논문에서는 3세대 바이오매스 중 거대조류, 즉 해조류 바이오매스로부터 유래된 바이오가스를 연료로 사용하여 열, 전력 및 수소를 생산하는 삼중발전의 타당성 평가를 수행하였다. 이를 위해 3 MW급 고체산화물 연료전지와 가스터빈, 그리고 유기 랭킨 사이클로 이루어진 상용 규모의 열, 전력 및 수소 생산공정을 공정모사기를 사용하여 설계, 모사하였고, 공정모사로 부터 얻은 열 및 물질 수지를 통해 각 단위조작 장치의 가격을 추정하고 경제성을 분석하였다. 수소를 생산하기 위해 고체산화물 연료전지의 설계를 수정하였는데, 연료전지 내 애프터-버너를 제거하고 수성-가스 전환 반응기를 추가하였다. 공정모사 결과 설계된 삼중발전 공정은 시간당 3.47톤의 건조 갈조류 원료로부터 생산된 2톤의 바이오가스를 이용하여 2.3 MW의 전력과 50 kg hr-1의 수소를 37%의 효율로 생산한다. 이 결과를 토대로 가장 현실적인 시나리오에 대해 경제적으로 평가하고 BESP (breakeven electricity selling price)를 계산하였는데, ¢10.45 kWh-1로 기존의 고정 발전 대비 동등 이상의 수준으로 나타났다.

Keywords

References

  1. International Energy Outlook 2019, U.S. Energy Information Administration (https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf (Accessed Apr. 2020)).
  2. Murphy, J. D., Drosg, B., Allen, E., Jerney, J., Xia, A., and Herrmann, C., "A Perspective on Algal Biogas", IEA Bioenergy, pp. 1-38 (2015).
  3. Fasahati, P., Woo, C. M., Saffron, H. C., and Liu, J. J., "Potential of Brown Algae for Sustainable Electricity Production through Anaerobic Digestion," Energ. Convers. Manag., 135, 297-307 (2017). https://doi.org/10.1016/j.enconman.2016.12.084
  4. Ormerod, R. M, "Solid Oxide Fuel Cells," Chem. Soc. Rev., 32(1), 17-28 (2003). https://doi.org/10.1039/b105764m
  5. Biogas and Fuel Cells Workshop Summary Report, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/BK-5600-56523 (2013).
  6. Dietrich, R.-U., Lindermeir, A., Oelze, J., Spieker, C., Spitta, C., and Steffen, M., "SOFC Power Generation from Biogas: Improved System Efficiency with Combined Dry and Steam Reforming," ECS Trans., 35(1), 2669-2683 (2011).
  7. Kim, J., Sastri, B., and Conrad, R., "Solid Oxide Fuel Cell R&D," TechConnect Briefs, 2, 205-207 (2017) (https://briefs.techconnect.org/wp-content/volumes/TCB2017v2/pdf/1069.pdf).
  8. Multiyear Research, Development and Demonstration Plan, Fuel Cell Technologies Office, Department of Energy (2017). (https://www.energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 (Accessed Apr. 2020)).
  9. Vora, S. D., Department of Energy Office of Fossil Energy's Solid Oxide Fuel Cell (SOFC) Program, 17th Annual SOFC Workshop, Pittsburgh, PA, July 19-21, (2016).
  10. Eveloy, V., Karunkeyoon, W., Rodgers, P., and Al Alili, A., "Energy, Exergy and Economic Analysis of an Integrated Solid Oxide Fuel Cell-Gas Turbine-Organic Rankine Power Generation System," Int. J. Hydrogen Energ., 41(31), 13843-13858 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.146
  11. Arsalis, A., "Thermoeconomic Modeling and Parametric Study of Hybrid SOFC-Gas Turbine-Steam Turbine Power Plants Ranging from 1.5 to 10 MWe," J. Power Sources, 181(2), 313-326 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.104
  12. Trendewicz, A. A., and Braun, R. J., "Techno-Economic Analysis of Solid Oxide Fuel Cell-Based Combined Heat and Power Systems for Biogas Utilization at Wastewater Treatment Facilities," J. Power Sources, 233, 380-393 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.017
  13. Cozzolino, R., Lombardi, L., and Tribioli, L., "Use of Biogas from Biowaste in a Solid Oxide Fuel Cell Stack: Application to an Off-Grid Power Plant," Renew. Energ., 111, 781-791 (2017). https://doi.org/10.1016/j.renene.2017.04.027
  14. Zhang, W., Croiset, E., Douglas, P. L. L., Fowler, M. W. W., and Entchev, E., "Simulation of a Tubular Solid Oxide Fuel Cell Stack Using Aspen PlusTM Unit Operation Models," Energ. Convers. Manag., 46(2), 181-196 (2005). https://doi.org/10.1016/j.enconman.2004.03.002
  15. Valentina, I. E., Design and analysis of a seaweed biogas-powered Solid Oxide Fuel Cell (SOFC) integrated into a polygeneration process, Msc. Thesis, Pukyong National University, Busan, Korea, (2018).
  16. Liu, J., "Feasibility of Combined Heat and Power Plant based on Fuel Cells using Biogas from Macroalgal Biomass", Clean Technol., 24(4), 357-364 (2018). https://doi.org/10.7464/KSCT.2018.24.4.357
  17. Li, X., Ogden, J., and Yang, C., "Analysis of the Design and Economics of Molten Carbonate Fuel Cell Tri-Generation Systems Providing Heat and Power for Commercial Buildings and $H_2$ for FC Vehicles." J. Power Sources, 241, 668-679 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.068
  18. Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/SR-550-39433 (2006).
  19. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-5100-47764 (2011).
  20. Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., and Bhattacharyya, D., Analysis, Synthesis, and Design of Chemical Processes, Fourth Edition, Prentice Hall, (2012).
  21. Ghirardo, F., Santin, M., Traverso, A., and Massardo, A., "Heat Recovery Options for Onboard Fuel Cell Systems," Int. J. Hydrogen Energ., 36(13), 8134-8142 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.111