• Title/Summary/Keyword: Design Limit Load

Search Result 461, Processing Time 0.023 seconds

Fatigue Field Test of Variable Message Sign Structure and Evaluation of AASHTO Specifications (가변정보판이 설치된 지주구조물에 대한 피로 시험 및 AASHTO설계기준 적용성 평가)

  • Park, Jong Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Message Signs (VMS) structures offer an increase in traffic safety through their ability to relay massages to motorists for warnings of hazards ahead, traffic congestion, accidents, and lane closings. The geometry of these signs sometimes results in the significant cyclic loading of the supports structure due to wind gusts, which can result from passing trucks or from natural wind. This study presents the results of analytical and experimental investigations of VMS structures. The commercially available softwareGTSTRUDL (2003) was used to perform space-frame structural analyses of these welded tubular structures. Fatigue evaluations were performed using stress ranges from field measurements and from structural analyses. Based on the results of the structural analyses that were conducted, where fatigue design loadings that had been derived from AASHTO Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals (2001) were used, the structures that had been studied were found not to have infinite fatigue life. According to the limited measurements that were made in this study, the fatigue design loadings derived from AASHTO Specifications (2001) appear to be conservative, but they are not overly conservative. The results of this study should be used to make a reasonable design of VMS structures, and to maintain their standards.

A Study on Design and Construction Methods of Movable Pavilions (이동식 정자의 설계 시공법 연구)

  • Lee, Jung-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • This study aims to examine the design and construction methods of movable Pavilions. Through the literature analysis, the setting up of the construction background, location and direction, size and composition, materials and construction methods were analyzed. The results are as follows; First, the movable pavilion is designed to enjoy a wide range of views. It was a creation that reflected the way in which the ideal life was pursued based on the experience of enjoying scenery rather than owning one's own house and running a pavilion. Second, the formation of movable pavilion was intended to enjoy the scenery by season without restrictions on time and place. It can also relieve the hassle of having to move tools to enjoy the wind every time. Third, the movable pavilion faces to a place with good scenery and determines its position and direction. Most of them were built on a small scale and divided the space for viewing the scenery, playing GO(Baduk), writing poems, and playing musical instruments. Also, wood was used mainly. To reduce the load, roofs and walls were constructed with light materials such as bamboo, straw, thick sheet of oil, and cotton cloth. The construction method was mainly used by the method of fastening for easy coupling and dismantling. When a building was constructed on the upper part of a ship or cart, the wooden structure of a regular pavilion was constructed. Fourth, when comparing the design and construction characteristics of ordinary pavilion and movable pavilion, the movable pavilion is easy to see for contrast purposes, so there is no limit to setting the location and direction. Instead, more stringent systems and techniques were called for, because as mobility forces should be considered, structurally measures to withstand loads, and they should satisfy their function and form as pavilion.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Reliability Analysis of Plane Stress Element According to Limit State Equations (한계상태방정식에 따른 평면응력요소의 신뢰성해석)

  • Park, Seok Jae;Choi, Wae Ho;Kim, Yo Suk;Shin, Yeong-Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.567-575
    • /
    • 2001
  • In order to consider statistical properties of probability variables used in the structural analysis the conventional approach using the safety factor based on past experience usually estimated the safety of a structure Also the real structures could only be analyzed with the error in estimation of loads material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis Safety of structure could not precisely be appraised by the traditional structural design concept Recently new aproach based on the probability concept has been applied to the assessment of structural safety using the reliability concept Thus the computer program by the Probabilitstic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. Verification of the reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. The proper failure criterion according to characteristic of materials must be used for safe design.

  • PDF

Design and Implementation of HPC Job Management Framework for Computational Scientific Simulation (계산과학 시뮬레이션을 위한 HPC 작업 관리 프레임워크의 설계 및 구현)

  • Yu, Jung-Lok;Kim, Han-Gi;Byun, Hee-Jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.554-557
    • /
    • 2016
  • Recently, supercomputer has been increasingly adopted as a computing environment for scientific simulation as well as education, healthcare and national defence. Especially, supercomputing system with heterogeneous computing resources is gaining resurgence of interest as a next-generation problem solving environment, allowing theoretical and/or experimental research in various fields to be free of time and spatial limits. However, traditional supercomputing services have only been handled through a simple form of command-line based console, which leads to the critical limit of accessibility and usability of heterogeneous computing resources. To address this problem, in this paper, we provide the design and implementation of web-based HPC (High Performance Computing) job management framework for computational scientific simulation. The proposed framework has highly extensible design principles, providing the abstraction interfaces of job scheduler (as well as bundle scheduler plug-ins for LoadLeveler, Sun Grid Engine, OpenPBS scheduler) in order to easily incorporate the broad spectrum of heterogeneous computing resources such as cluster, computing cloud and grid. We also present the detailed specification of HTTP standard based RESTful endpoints, which manage simulation job's life-cycles such as job creation, submission, control and status monitoring, etc., enabling various 3rd-party applications to be newly created on top of the proposed framework.

  • PDF

FRACTURE STRENGTH BETWEEN DIFFERENT CONNECTOR DESIGNS OF ZIRCONIA CORE FOR POSTERIOR FIXED PARTIAL DENTURES MANUFACTURED WITH CAD/CAM SYSTEM (CAD/CAM을 이용한 구치부 전부도재 고정성 국소의치 지르코니아 코어의 연결부 설계에 따른 파절강도)

  • Seo Jun-Yong;Park In-Nim;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Statements of problem: Zirconia core is used for posterior fixed partial dentures because it's good mechanical properties. Stress is concentrated on connectors in fixed partial dentures, so the proper design of connector areas is needed for adequate mechanical long-term properties of any prosthesis. The area of connector is critical, but tooth size and surrounding soft tissue limit the connector design. Purpose: The purpose of this study is to compare fracture strengths between different connector designs of zirconia core for posterior fixed partial dentures manufactured with CAD/CAM system and determining the optimal connector design satisfying strength and hygiene. Material and method: The following four groups of 40 posterior fixed partial denture specimens(each group 10) were fabricated as followed; group 1 vertical height of connector is 3mm (control group, all groups have the same condition); group 2, lingual vertical 1mm reinforcement on connector; group 3, lingual vertical 2mm reinforcing on connector and group 4, lingual vertical 3mm reinforcing on connector. Specimens were subjected to compressive loading on the central fossa of pontic by instron. SEM was used to identify the initial crack and characterize the fracture mode. Results: The results were as follows: 1. The mean fracture load of the non-lingual reinforcing group was 1212N and the lingual vertical 1mm reinforcing group was 1510N, the lingual vertical 2mm reinforcing group was 1882N, the lingual vertical 3mm reinforcing group was 1980N. 2. The reinforcing groups were statistically significant compared to non-reinforcing groups(P<0.001). 3. There were 2, 3mm reinforcing groups that were statistically significant compared to 1mm reinforcing groups(P<0.001), and the 3mm reinforcing group was not statistically significant compared to 2mm reinforcing groups(P>0.05) 4. Fractures were initiated in gingival embrasures of connectors and processed to the loading site. Conclusion: In this study, lingual reinforcement of connector for improved strength of zirconia based fixed partial denture is nessasary. And long-term study for clinical application is required

Experimental Study on Buckling Restrained Knee Bracing Systems Using Bolted Channel Sections (볼팅 고정 채널 형강 보강재를 이용한 비좌굴 Knee Bracing System의 내진성능에 대한 실험 연구)

  • Lee, Jin;Lee, Ki-Hak;Lee, Sung-Min;Shin, Ji-Wook;Kim, Young-Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.37-46
    • /
    • 2009
  • In this study, the seismic performance of the Buckling Restrained Knee Bracing (BRKB) system was evaluated through a pin-connected 1-bay 1-story frame. The BRKB system using a bolted channel section developed was composed of a steel plate as a load-resisting core member and two channel sections as a restrainment of the local and global buckling of the core plate. The main purpose of the BRKB system is to be used as an effective tool to re-strengthen/rehabilitate old low- and mid-rise RC frame buildings, which do not have enough seismic resistance to earthquake loadings. The main variables for the test specimens were the size of the core plates, stiffeners and the use of guide plates. The test results showed that the size of the core plate, which was the main element for the load-resisting member, was the most important parameter to achieve ductile behavior under tension as well as compression, until the maximum displacement exceed twice the design drift limit given by the AISC Seismic Provisions.

An Experimental Study on the Bending Capacities of Steel-Concrete Column under the Axial Load (축력을 받는 SC 기둥의 휨 성능에 관한 실험 연구)

  • Lee, Hwan Soo;Oh, Myoung Ho;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.87-96
    • /
    • 2003
  • The Ssteel-Cconcrete (SC) Ccomposite Ccolumn is a new Ccomposite Ccolunin system, where hoops are welded between flanges of H-shapesd steel and concrete is filled in spaces between flanges are filled with con crete. Tests of SC composite columns were performed previously to determine their compression, bending and shear strength, and it showed good structural behavior. But sSince a column is usually subjected to an axial compression force, and bending it ihas needed to be bent forevaluate its structural behavior to be evaluated when its axial load and bending isaresimultaneously applied to the SC composite column. In this paper, tests were conducted to investigate the bending strength of SC composite columns subjected to axial compression force and bending moment. The parameters of the tests were concrete, a stud bolt, a hoop and a magnitude of axial compression. The test results showed that the maximum bending strength and ductility of an SC composite column were increased by 33-42% and 33-63%, respectively, comparinged to those of a bare steel column. Also, the results obtained bywith the Korean Limit State Design Code (LSD) presents a considerably safe side value compared to those of the Eurocode-4 and the Japan Code. However, wWhen the axial compression force is was increased, however, there awere considerable differences between the maximum strength obtained by the test and the LSD analysis. For this reason, it is recommended tothe use of the Eurocode-4 is recommended when calculates the strength of an SC composite column is being calculated, since the Eurocode-4 gives us a better estimation.

The Estimation and Comparison of Flexural Crack Width Considering Bonding Characteristics in Reinforced Concrete Members (부착특성을 고려한 철근콘크리트 부재의 휨 균열폭 산정 및 비교)

  • Ko, Won-Jun;Min, Byung-Chul;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.579-588
    • /
    • 2006
  • In recent years, the availability of high-strength reinforcing and prestressing steels leads us to build economically and efficiently designed concrete structural members. One of critical problems faced to the structural engineers dealing with these types of structural member is controls of crack width that is used as a criterion for the serviceability in the limit state design. Especially, flexural cracking must be controlled to secure the structural safety and to improve the durability as well as serviceability of the load carving members. The proposed method utilizes the results of pure tension test in which tensile loads are applied both side of specimen, done by Ikki. The bond characteristics of deformed reinforcing bar under pure tension is considered by the area of concrete and rib area. The results of proposed method are compared with the test data and the results show that the proposed method can take into account the dimensions, variation of sectional properties, and direction of reinforcing and gives more accurate maximum bond stress and corresponding relative slip than the existing methods. the characteristics of bonding is considered by using dimensionless slip magnitude and effective reinforcement ratio. The validity of the proposed equation is verified by test experimental data.

An Analytical Review on the Inelastic Region of Column Strength Curve Associated with Residual Stress of Steel Member under Axial Force (강 압축 부재의 잔류응력에 따른 기둥강도곡선의 비탄성영역에 대한 해석적 고찰)

  • See, Sang-Kwang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • This study is the analytical review on the inelastic region of CRC column strength curve. The inelastic region of CRC column strength curve is based on the Bleich theory and the maximum residual stress of $0.5{\sigma}_y$. This is somewhat conservative by considering the fact that the maximum residual stress of $0.3{\sigma}_y$ is well known. This study proposes column strength curve for nonlinear behavior of hot rolled structural steel members under axial force and tangent modulus Et, with the maximum residual stress of $0.3{\sigma}_y$ and compares them with those of CRC. The stress of the inelastic column under axial compression exceeds proportional limits and reaches yielding point before applied load render the column bent. The column strength curve that depends on gradually yielding state of section needs to be reviewed. In this study, it is derived that the critical load formular according to material yielding with the maximum residual stress of $0.5{\sigma}_y$ and compared with CRC column design curve.