• Title/Summary/Keyword: Design Generator

Search Result 2,018, Processing Time 0.027 seconds

A Fault Detection System Design for Uncertain Fuzzy Systems

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • This paper deals with a fault detection system design for uncertain nonlinear systems modelled as T-S fuzzy systems with the integral quadratic constraints. In order to generate a residual signal, we used a left coprime factorization of the T-S fuzzy system. From the filtered signal of the residual generator, the fault occurence can be detected effectively. A simulation study with nuclear steam generator level control system shows that the suggested method can be applied to detect the fault in actual applications.

Optimal Design of a Distributed Winding Type Axial Flux Permanent Magnet Synchronous Generator

  • You, Yong-Min;Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.69-74
    • /
    • 2012
  • This paper presents a distributed winding type axial flux permanent magnet synchronous generator (AFPMSG) with reduced the total harmonic distortion (THD), suitable for wind turbine generation systems. Although the THD of the proposed distributed winding type is more reduced than the concentrated winding type, the unbalance of the phase back EMF occurs. To improve the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG, the Kriging based on the latin hypercube sampling (LHS) is utilized. Finally, these optimization results are confirmed by experimental results. As a result, the unbalance of the phase back EMF and the output power of the distributed winding type AFPMSG were improved while maintaining the total harmonic distortion (THD) and the average phase back EMF.

$H_\infty$Control Synthesis for Robust Control of a Turbo-Generator (터-빈 발전기의 견실성 제어를 위한$H_\infty$제어 시스템 설계)

  • Chung, Dae-Won;Kim, Kern-Joong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.622-628
    • /
    • 1999
  • This paper presented to design a robust turbo-generator control system using {{{{ { H}_{$\infty$ } }}}} control synthesis for improving small-signal stability. Application study of{{{{ { H}_{$\infty$ } }}}} control synthesis is more appropriate in this system since a turbo-generator system is usually operated under circumstance of unmeasurable modelling uncertainty and external disturbance. The{{{{ { H}_{$\infty$ } }}}} control theory was briefly reviewed for good understanding and the reasonable approach. The design results are simulated for a case study and to check the system performance in comparison with currently operating Lead/Lag filtered PSS performance.

  • PDF

Thyristor-Based Resonant Current Controlled Switched Reluctance Generator for Distributed Generation

  • Emadi Ali;Patel Yogesh P.;Fahimi Babak
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.68-80
    • /
    • 2007
  • This paper covers switched reluctance generator (SRG) and its comparison with induction and synchronous machines for distributed generation. The SRG is simple in design, robust in construction, and fault tolerant in operation; it can also withstand very high temperatures. However, the performance and cost of the SRG power electronics driver are highly affected by the topology and design of the converter. IGBT and MOSFET based converters are not suitable for very high power applications. This paper presents thyristor-based resonant converters which are superior candidates for very high power applications. Operations of the converters are analyzed and their characteristics and dynamics are determined in terms of the system parameters. The resonant converters are capable of handling high currents and voltages; these converters are highly efficient and reliable as well. Therefore, they are suitable for high power applications in the range of 1MW or larger for distributed generation.

A BANDWIDTH VARIABLE DIGITAL GENERATOR FOR RADAR ALTIMETER

  • Lin, Ying;Liu, Heguang;Liu, Zhiqlang;Xu, Ke;Zhang, Xuabgjyb
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.484-489
    • /
    • 2002
  • This paper concerns the design and implementation of a Bandwidth Variable Digital Chirp Generator (DCG) for the radar altimeter. A double SRAM parallel structure is used to breakthrough the upper DCG bandwidth limited by the highest clock frequency of the digital chips. An experimental system working in the waveform storage method has been implemented. We show that the bandwidth changed according to the radar altimeter's requirement and the design released the stringent speed requirement of the chips fur making a variable wide bandwidth DCG.

  • PDF

Design on Pipeline Architecture for the Low and Column Address Generator of 2D DCT/IDCT (2D DCT/IDCT의 행, 열 주소생성기를 위한 파이프라인 구조 설계)

  • 노진수;박종태;문규성;성해경;이강현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.14-18
    • /
    • 2003
  • This paper presents the pipeline architecture for the low and column address generator of 2D DCT/IDCT(Discrete Cosine Transform/Inverse Discrete Cosine Transform). For the real time process of image data, it is required that high speed operation and small size hardware In the proposed architecture, the area of hardware is reduced by using the DA(distributed arithmetic) method and applying the concepts of pipeline on the parallel architecture. As a results, the designed pipeline of the low and column address generator for 2D DCT/IDCT architecture is implemented with an efficiency and high speed compared as the non-pipeline architecture. And the operation speed is improved about 50% up. The design for the proposed pipeline architecture of DCT/IDCT is coded using VHDL.

  • PDF

The Robust Controller Design for Nuclear Steam Generator Using $H_{\infty}$ Control Theory

  • Yook, Seong-Hoon;Lee, Un-Chul;Park, Jung-In
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.367-373
    • /
    • 1996
  • H$_{\infty}$ robust control theory is applied to the nuclear steam generator level control. Nuclear steam generator has the properties such as nonlinearity, non-minimum phase, and so, has some difficulties on level control. In a nuclear plant, it is more important to keep the operating variables under certain safety limits against various uncertainties than to meet the optimal performance. The designed H$_{\infty}$ controller shows robust level control against modelling error, disturbance in the nonlinear simulation. As the H$_{\infty}$ controller has both robustness and design transparency, it is adequate to the automation of level control and in licensibility

  • PDF

Investigation of Maximum External Pressure of Helically Coiled Steam Generator Tubes with Axial and Circumferential Through-Wall Cracks (축방향 및 원주방향 관통균열이 존재하는 나선형 전열관의 파손 외압 평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Choi, Shin-Beom;Yu, Je-Yong;Kim, Ji-Ho;Choi, Suhn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.573-579
    • /
    • 2013
  • Once-through helically coiled steam generator tubes subjected to external pressure are of interest because of their application to advanced small- and medium-sized integral reactors, in which a primary coolant with a relatively higher pressure flows outside the tubes, while secondary water with a relatively lower pressure flows inside the tubes. Another notable point is that the values of the mean radius to thickness ratio of these steam generator tubes are very small, which means that a thick-walled cylinder is employed for these steam generator tubes. In the present paper, the maximum allowable pressure of helically coiled and thick-walled steam generator tubes with through-wall cracks under external pressure is investigated based on a detailed nonlinear three-dimensional finite element analysis. In terms of the crack orientation, either circumferential or axial through-wall cracks are considered. In particular, in order to quantify the effect of the crack location on the maximum external pressure, these cracks are assumed to be located in the intrados, extrados, and flank of helically coiled cylinders. Moreover, an evaluation is also made of how the maximum external pressure is affected by the ovality, which might be inherently induced during the tube coiling process used to fabricate the helically coiled steam generator tubes.

PERFORMANCE AND DESIGN OF A SINGLE-PHASE LINEAR SYNCHRONOUS GENERATOR USING FINITE ELEMENT METHOD

  • Eid, Ahmad M.;Kim, Sung-Jun;Kang, Ju-Sung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.95-99
    • /
    • 2005
  • This paper presents a general proposal to design and calculate the performance of a tubular permanent magnet linear generator treated here on the basis of the Finite Element Method. Optimizing the linear generator dimensions reduces the cogging force, which occurs due to the interaction between stator teeth and the permanent magnets. The generated AC voltage is analyzed and evaluated for both no load and load cases to take the armature reaction effects on the air gap flux density. A repetitive routine is followed to calculate the output AC voltage from the change of flux and the speed of the single-phase linear generator. The AC output voltage is calculated for different resistive loads, and hence, the linear generator load characteristic is obtained. The designed linear generator is capable to generate an output power of 5.3kW with AC output voltage of 222V with an efficiency of 96.8% at full load of 23.8A. The full load current is chosen based on the thermal properties of the coil wire insulations.

  • PDF

A study on the contactless generator and recharge system for a bicyle (비접촉식 자전거 발전기 및 충전 시스템 개발에 관한 연구)

  • Park, Wang-Geun;Won, Si-Tae
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, the non-contact type bicycle generator system considering the recharge is developed to use the eco-friendly energy source when the bicycle is operating. The following three main factors are considered in this study. One of factors is that the intensity of the rotating magnet is in the range of 2,700~4,300 [Gause]. The next factor is that the separation distance of rotating magnet and bicycle rim is in the range of 1.5-3.0 mm. The last factor is that the pedaling speed is in the range of 55 RPM [Wheel speed 5.6Km]~150 RPM [Wheel speed 15.25Km] consirering with the 5 staged gear transmission. The obtained results are as followed. (1) The generator output voltage gradually increases from 3V to 10V with the pedaling speed increases, at the separation distance is less than 2.5 mm and the operating voltage of the LED lamp is generated at a pedaling speed of 60 RPM or more. (2) The output current of the generator increases from 20mA to 40mA with the pedaling speed increases, at a separation distance is less than 2.0 mm and the operating current of the LED lamp is generated at a pedaling speed of 60 RPM or more. (3) When the separation distance was 3.0 mm, the output voltage and current are significantly lower than those of the bicycle LED lamp is generated. (4) The charging time is expected to be 12.24 ~ 17.65 hours when the magnitude of the magnet is 3,400[Gauss] at a pedaling speed of 55 RPM or more. (5) As a result of this study, it is thought that the non-contact type bicycle generator system considering the recharge can replace the conventional friction power generation system.