• Title/Summary/Keyword: Design Engineering

Search Result 60,804, Processing Time 0.074 seconds

A Case Study on Practical Teaching Methods for Engineering Design Education - A Practical Teaching Case of Artificial Intelligence Courses for Juniors in Computer Engineering Major - (공학설계 교육을 위한 현실적 교수학습 방법론의 적용 연구 - 컴퓨터공학과 3학년 인공지능 교과진행 사례 -)

  • Kim, Jinil
    • Journal of Engineering Education Research
    • /
    • v.21 no.6
    • /
    • pp.74-80
    • /
    • 2018
  • This paper proposes practical teaching methods for efficient progress of project-based learning in engineering design education. Engineering design courses consist of three categories; introductory, individual and capstone design courses. This study concentrates on the case of individual design courses. Individual design courses act as bridges between introductory and capstone design courses and deal with applicable projects based on theoretical frameworks. In this study, practical teaching methods are applied to Artificial Intelligence curriculum as an individual design course for Juniors in Computer Engineering Major. The results on application of practical teaching methods show relatively positive in all aspects.

Integrating Engineering Writing with Cornerstone Design (공학글쓰기와 공학 기초설계의 통합)

  • Kwon, Sunggyu
    • Journal of Engineering Education Research
    • /
    • v.22 no.4
    • /
    • pp.12-21
    • /
    • 2019
  • This paper asserts to teach engineering writing while teaching cornerstone design as well as addresses its background of the assertion. Cornerstone design course in which students study what is engineering design and what is the design process by team activities provides suitable circumstance for them to learn technical writing for solving communication problems and to produce some language artifacts. Studying the process-based writing and making use of the written artifacts in the course of engineering design process boosts design thinking for developing creative design concepts and mediates problem solving communications among design stakeholder.

Exploring the Applicability from Extracurricular Design to Basic Engineering Design in Online : Focusing on the Case of IoT Extra-Curricular in Online (온라인 비교과 설계 교육과정에서 기초 설계 교육과정으로의 적용 가능성 탐색 : 온라인 IoT 비교과 교육과정 사례를 중심으로)

  • Hwang, Yunja;Huh, Ji-suk
    • Journal of Engineering Education Research
    • /
    • v.24 no.4
    • /
    • pp.30-40
    • /
    • 2021
  • The purpose of this study is to verify the effectiveness the IoT program in online, and explore the applicability of the design course in consideration of design elements and realistic constraints for engineering education accreditation in online. For this study, IoT programs developed based on online classes were operated, and the effectiveness as a subject was verified through satisfaction surveys, competency test, and interview of participating students. In addition, by presenting design elements and realistic constraints in a online environment required to apply to engineering design courses, it is expected that they can be used as basic data in developing and operating actual design curriculum.

An Investigation on the Concepts of Teaching and Learning in Engineering Design (공학설계의 교수·학습적 개념 고찰)

  • Lee, Youngtae;Jung, Jaewon
    • Journal of Engineering Education Research
    • /
    • v.24 no.3
    • /
    • pp.3-10
    • /
    • 2021
  • The purpose of this study was to explore the theory behind creative engineering design instructional characteristics. This study was conducted as a literature review to derive engineering design instructional characteristics. The results showed that there are three primary characteristics: learner-centered instructional activities, collaborative communication interactions, and multidisciplinary convergence to promote creative thinking. This study was meaningful in that it identified creative engineering design instructional characteristics based theoretical considerations of engineering design and engineering design education. Therefore, it is expected that the results of this study will contribute to the development of creative engineering design instructional models.

Developing the Course of Cornerstone Design Concentrating on Conceptual Design (개념설계에 치중하는 기초설계 과목 개발)

  • Kwon, Sunggyu
    • Journal of Engineering Education Research
    • /
    • v.22 no.2
    • /
    • pp.16-27
    • /
    • 2019
  • In order to note some points necessary for developing the cornerstone design course concentrating on conceptual design through that students acknowledge that engineering design is not to make things but to produce knowledge not only meet requirements of clients, users, and stake holders but also to solve problems, this paper describes the contents for the course that covers conceptual design as well as embodiment design, explains some ways and tools both for guiding students and for asking for study of lecture materials, and discuss things to be considered when faculty designs the course.

A Study on Conceptual Design of Smart Training System for Advanced Plant Design and FEED Engineers Based on Exploring Systems Engineering (시스템엔지니어링 탐색적 접근을 통한 플랜트 엔지니어링 선행설계 전문인력 양성을 위한 스마트 교육시스템 개념설계에 관한 연구)

  • Hong, Dae Geun;Park, Chang Woo;Suh, Suk Hwan;Sur, Hwal Won
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Front End Engineering Design (FEED), currently dominated by a few advanced countries, creates the highest added-value in the in plant construction industry. In the domestic plant engineering industry, it is difficult to acquire its own technology capability and experience due to lack of experience and shortage of experts in advanced design fields such as basic design and FEED. To achieve competitiveness with the advanced countries, it is necessary to establish smart training system for advanced plant design and FEED engineers. This study aims to design an integrated training framework for plant engineering and FEED using system engineering to build a smart plant engineering education system that learns design knowledge based on educational content and experience based on design stage for chemical plant.

Structure Development of Systematic Conceptual Design Process for Designing Engineering Systems (공학 시스템 설계를 위한 체계적인 개념 설계 프로세스 구조 개발)

  • Park, Yong-Taek;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.86-94
    • /
    • 2007
  • The design process must be planned carefully and executed systematically in order to support designers who are faced with many engineering design problems. In particular, conceptual design stage is very important than other stages such as detailed design or manufacturing stage on designing engineering systems. When designers are faced contradictory situation in task, conceptual design usually requires inventive thinking which depends on their creativity. And in order to develop good concepts, it is necessary to resolve contradictory situations during conceptual design. This paper presents a structure of systematic conceptual design process for designing engineering systems. And we developed the automatic feeding screw device using the proposed design process structure.

Applications of 3D CAD and 3D Printing in Engineering Design Education (3D CAD 와 3D프린팅을 연계한 공학설계교육 활용)

  • Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1085-1091
    • /
    • 2014
  • Recently, 3D printing has received increasing attention due to its boundless potentials. Because 3D printing starts from 3D geometry information, computer-aided design (CAD) is an essential technology to build 3D geometry data. These days, education of 3D CAD for engineering students has been changed from the theoretical lecture to practical design training using commercial CAD software. As a result, open-ended design projects have replaced the traditional theoretical examinations to evaluate students' outcomes. However, such design projects are not enough to evaluate students' outcomes because their results are expressed in two-dimensional ways. In this paper, applications of 3D printing in engineering design education are discussed by describing the procedure and outcomes of design projects. It was found that the use of 3D printing could improve students' outcomes by fabricating real physical models out of their designs.

Creative Engineering Design Education Utilizing the Problem-solving Process and Skills of Critico(-Creative) Thinking (비판(-창의)적 사고의 문제 해결 과정과 기량을 활용한 창의 공학 설계 교육)

  • Park, Sang Tae;Kim, Jedo
    • Journal of Engineering Education Research
    • /
    • v.24 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • ABEEK recommends convergent engineering projects to nurture creative problem-solving ability for 1st year engineering students through 'Creative Engineering Design' course. However, 1st year engineering students, who have not yet studied core subjects in engineering, have difficulties understanding and coping with the challenges posed by the engineering-related projects. For this reason, the educational objectives of this course are usually frustrating to achieve by the instructor. In this paper, by using the problem-solving process and skills of critico(-creative) thinking, we prepare guidelines for creative engineering design education that allow 1st-year students to effectively participate in engineering projects without a complete understanding of the design process which is to be studied. Also, we present a case study that applies the guidelines to an on-going creative engineering design course and discusses the outcomes by showing student-generated works. The results showed that the intuitive content and everyday expression of critico(-creative) thinking education enabled the instructor to effectively guide their students through the requirements of engineering projects without relying on advanced engineering design methods, and that the application of these guidelines also helped improve students' communication skills, including presentation. We show that the guidelines for creative engineering design education utilizing the problem-solving process and skills of critico(-creative) thinking is not only contributing to achieving the educational objectives of the creative engineering design course but can also be an educational paradigm that incorporates critico(-creative) thinking education into engineering education.