• 제목/요약/키워드: Design Allowable

검색결과 908건 처리시간 0.021초

콘크리트궤도 토공노반의 허용잔류침하량 결정에 관한 연구 (Study of Determination of Allowable Residual Settlement of Concrete Track Roadbed for High-Speed Railway)

  • 이일화;양신추;장승엽
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1121-1125
    • /
    • 2007
  • An active application of concrete track is being expected for the future construction of Korean railroad. For the successful concrete track construction and design in earthwork areas, the residual settlement should be reasonably estimated using the proper method. The concrete track is extremely vulnerable to the damage of residual settlement. However, at the transition areas such as bridge approach, differential settlement will likely occur due to difference of stiffness, poor drainage and poor ground treatment. The maintenance is very difficult for excessive settlement on existing line, it is need to constrain the residual settlement in step of design. In this paper, it is performed the determination of the allowable residual settlement through various study to understand the residual settlement behavior of concrete track roadbed.

  • PDF

국산 복합재료의 물성치 공유체계 수립을 위한 요구조건 (Requirements for Composite Material Property Sharing System to Korean Products)

  • 서장원;이승윤;이영대
    • 항공우주시스템공학회지
    • /
    • 제7권1호
    • /
    • pp.32-38
    • /
    • 2013
  • This paper presents a survey results on the material properties sharing system database on composite in USA. The requirements on management and database for Korean composite product that meet KAS (Korean Airworthiness Standard) are suggested. The certification policy on composite material qualification of also introduced. The benefits to material supplier, aircraft manufacturer and certification authority, which get through the database have been considered. The database managing process, composite material manufacturing process, properties and design allowable meeting KAS have been suggested.

프리스트레스를 단계적으로 도입하는 IPC 거더의 설계 이론 연구 (Development of a New Design Theory for Incrementally Prestressed Concrete Girder)

  • 한만엽;김진근;이차돈;박준범
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.121-130
    • /
    • 2000
  • Current engineering practice in determining sectional dimensions of prestressed concrete (PSC) girders for bridges is primarily based on the code-specified allowable concrete stresses at different loading stages. It is customary that tendons and sectional dimensions are calibrated and tendon forces are applied at once at the initial stage to keep the subsequent stresses occurring at different loading stages within the allowable stresses. This traditional tensioning method, however, usually results in a too conservative sectional depth in view of ultimate capacity of a girder. A new design method which can realize the reduction of sectional depth of PSC girders is theoretically suggested in this study. Tendons are tensioned twice at different loading stages: the initial stage and the stage after fresh slab concrete is cast. It can be shown that according to this technique, sectional depth can be significantly reduced and larger span can be realized compared to traditional ones. Parametric studies are performed with due considerations given to its practical applications.

The Optimal Design of Single Sided PMLSM for Considering Winding Temperature Rising according to Thickness of Teeth

  • An, Ho-Jin;Cho, Gyu-Won;Woo, Seok-Hyeon;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.339-344
    • /
    • 2013
  • This research deals with design of the maximum thrust density with considering winding temperature rise of single-sided PMLSM. The temperature rise of winding which caused to machine characteristics such as copper loss, iron loss and efficiency was analyzed by FEM. The maximum allowable current density was calculated within the allowable temperature. The effects of loss and efficiency according to temperature characteristic were confirmed.

파랑하중을 받는 Steel Jacket의 최적화에 관한 연구 (Optimization of Steel Jacket Subjected to Wave Forces)

  • 장승필;이원표;원종국
    • 한국해안해양공학회지
    • /
    • 제2권1호
    • /
    • pp.43-50
    • /
    • 1990
  • 본 연구는 허용응력 설계법에 의한 파랑하중을 받는 스틸자켓의 부재단면 최적화를 다루고 있다. 건설경비의 최적화에 대한 목적함수로서 스틸자켓의 중량을 택하였으며 제약조건은 구조물의 변위와 응력이 허용치 내에 있도록 하였다. 비선형 최적화문제는 수정된 Newton-Raphson법을 이용한 SUMT 방법을 사용하여 해석하였다.

  • PDF

한옥의 내진설계를 위한 비틀림비정형 평가 방안 (An Evaluation Scheme of Torsional Irregularity for Seismic Design of Hanok)

  • 김영민
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.191-198
    • /
    • 2019
  • In this paper the evaluation scheme for determining torsional irregularity of Hanok has been proposed. The proposed method can evaluate torsional irregularity of Hanok easily only with characteristics of Hanok shapes, arrangement of lateral load resisting frames and their lateral stiffness without time consuming and complicate 3-dimensional structural analysis. The proposed formula is expressed as allowable maximum eccentricity, and torsional irregularity is evaluated by comparing this value with actual eccentricity. The applicability of the proposed scheme was evaluated by applying it to the line shape plan Hanok with two symmetrically arranged walls and the result was expressed by formula and graph. The results showed that the allowable maximum eccentricity is 10% of plan dimension perpendicular to the seismic load when the walls are placed at the extreme end. The proposed formula was expressed as a generalized formula so it can be applied generally to the various plan shape and wall arrangement of Hanok.

Optimization of spatial truss towers based on Rao algorithms

  • Grzywinski, Maksym
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.367-378
    • /
    • 2022
  • In this study, combined size and shape optimization of spatial truss tower structures are presented by using new optimization algorithms named Rao-1, and Rao-2. The nodal displacements, allowable stress and buckling for compressive members are taken into account as structural constraints for truss towers. The discrete and continuous design variables are used as design variables for size and shape optimization. To show the efficiency of the proposed optimization algorithm, 25-bar, and 39-bar 3D truss towers are solved for combined size and shape optimization. The 72-bar, and 160-bar 3D truss towers are solved only by size optimization. The optimal results obtained from this study are compared to those given in the literature to illustrate the efficiency and robustness of the proposed algorithm. The structural analysis and the optimization process are coded in MATLAB programming.

건물의 기초 형식 선정을 위한 규칙 기반 시스템 (Rule Based System for Selection of Foundation Types of Building Structures)

  • 김한수;최창근
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.23-32
    • /
    • 1996
  • 본 논문에서는 건물 기초 설계의 자동화를 위한 규칙 기반 시스템을 개발하였다. 상부구조의 설계 결과와 지반 조사 보고서로부터의 지반에 관한 자료를 읽어 들여 허용지내력을 추정하고 주어진 상황에 적절한 기초형식을 추론하는 방법을 제안하였다. 허용지내력은 표준관입시험치로부터 추정하였고, 이를 바탕으로 각 기중과 벽체의 기초형식은 우선 독립기초와 벽체기초라고 가정하여 그 크기를 계산하고 각 기초의 중첩여부를 조사하여 중첩되는 기초들은 본 논문에서 개발한 기초 합병의 방법을 이용하여 새로운 기초형식으로 변경되도록 하였다. 개발된 시스템은 주어진 상부구조 설계결과와 지반조건에 대하여 적절한 기초형식을 선정하여 그에 따른 배근 설계를 쉽게 할 수 있도록 해준다.

  • PDF

이동식 크레인 붐의 최적설계 (Optimum Design of Movable Hydraulic Crane Booms)

  • 유광선;박정완;히다카 신이치;한석영
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.776-781
    • /
    • 2010
  • Optimum design of movable hydraulic crane's booms for weight reduction was performed in this study. Since the boom weight of the present used booms is very heavy, it is needed to make them lighter structure as possible as we can. Optimum design was performed for the booms by changing from the hexagonal cross section to triangular truss structure under the conditions, which are the allowable stress for the present cross section must be maintained, and the optimized weight must be minimized. CATIAV5 was used for stress analysis and design variables were established as the height and width of the triangular truss structure. As the results, it is found that the height of the truss structure is increased in proportion to the height of the booms and the maximum stress for optimal truss structure was obtained as 412MPa, which is lower than the allowable stress for the present hexagonal cross section. The optimized weight of the booms is reduced to about 19.88% comparing to the original weight.

연직하중을 받는 무리말뚝의 새로운 설계 방법 (New Design Method for Pile Group under Vertical Load)

  • 이수형;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 기초기술학술발표회
    • /
    • pp.11-29
    • /
    • 2002
  • Current design of pile group is based on the estimation of the overall bearing capacity of a pile group from that of a single pile using a group efficiency. However, the behaviors of a pile group are influenced by various factors such as method of pile installation, pile-soil-pile interaction, cap-soil-pile interaction, etc. Thus it is practically impossible to take into account these factors reasonably with the only group efficiency, In this paper, a new method for the design of pile groups is proposed, where the significant factors affecting the behavior of a pile group are considered separately by adopting several efficiencies. Furthermore, in the proposed method, the load transfer characteristics of piles and the difference of pile behaviors with respect to the pile locations in group can be taken into account. The efficiencies for the method are determined using the settlement failure criterion, which is consistent with the concept of allowable settlement for structures. The efficiencies calculated from the results of existing model tests are presented, and the bearing capacity of a pile group in the other model test is calculated and compared with that from the test result, to verify the validity of the proposed method.

  • PDF