• Title/Summary/Keyword: Descent

Search Result 791, Processing Time 0.023 seconds

A Study on High Impedance Fault Detection using Wavelet Transform and Neural -Network (웨이브렛 변환과 신경망 학습을 이용한 고저항 지락사고 검출에 관한 연구)

  • Hong, Dae-Seung;Ryu, Chang-Wan;Yim, Wha-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.3
    • /
    • pp.105-111
    • /
    • 2001
  • The research presented in this paper focuses on a method for the detection of High Impedance Fault(HIF). The method will use the wavelet transform and neural network system. HIF on the multi-grounded three-phase four-wires primary distribution power system cannot be detected effectively by existing over current sensing devices. These paper describes the application of discrete wavelet transform to the various HIF data. These data were measured in actual 22-9kV distribution system. Wavelet transform analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate HIF from the normal status by a gradient descent method. The proposed method performed very well by proving the right state when it was applied staged fault data and normal load mimics HIF, such as arc-welder.

  • PDF

A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty (시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어)

  • 이수영;정명진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF

Dual Gradient Descent Algorithm On Two-Layered Feed-Forward Artificial Neural Networks (2개층 전방향 인공신경망에서의 이원적인 기울기 하강 알고리즘)

  • Choi, Bum-Ghi;Lee, Ju-Hong;Park, Tae-Su
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.3-6
    • /
    • 2006
  • 멀티레벨의 feed-forward 네트워크에 대한 학습 방법은 기울기 방법과 전역 최적화방법으로 나눌 수 있다. 역전파 또는 그 변형적인 방법들과 같은 기울기 하강 방법은 편리하기 때문에 여러 분야에서 다양하게 사용되고 있다. 하지만, 역전파와 관련된 가장 큰 문제는 지역 최소점에 빠진다는 것이다. 따라서 본 논문에서 기울기 하강 방법의 단순성을 침범하지 않고 지역 최소점을 극복할 수 있는 개선된 기울기 하강 방법을 제안한다. 제안하는 방법은 상위 연결과 하위연결을 분리하여 훈련하고 평가하기 때문에 이원적인 기울기 하강 방법이라 칭한다. 그렇기 때문에, 은닉층 유닛의 목표 값들은 하위 연결의 평가 툴로써 사용한다. 논문에서 제안하는 방법의 성능은 다양한 실험을 통해서 검증된다.

  • PDF

A study on time-varying control of learning parameters in neural networks (신경망 학습 변수의 시변 제어에 관한 연구)

  • 박종철;원상철;최한고
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.201-204
    • /
    • 2000
  • This paper describes a study on the time-varying control of parameters in learning of the neural network. Elman recurrent neural network (RNN) is used to implement the control of parameters. The parameters of learning and momentum rates In the error backpropagation algorithm ate updated at every iteration using fuzzy rules based on performance index. In addition, the gain and slope of the neuron's activation function are also considered time-varying parameters. These function parameters are updated using the gradient descent algorithm. Simulation results show that the auto-tuned learning algorithm results in faster convergence and lower system error than regular backpropagation in the system identification.

  • PDF

A Study Of Handwritten Digit Recognition By Neural Network Trained With The Back-Propagation Algorithm Using Generalized Delta Rule (신경망 회로를 이용한 필기체 숫자 인식에 관할 연구)

  • Lee, Kye-Han;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2932-2934
    • /
    • 1999
  • In this paper, a scheme for recognition of handwritten digits using a multilayer neural network trained with the back-propagation algorithm using generalized delta rule is proposed. The neural network is trained with hand written digit data of different writers and different styles. One of the purpose of the work with neural networks is the minimization of the mean square error(MSE) between actual output and desired one. The back-propagation algorithm is an efficient and very classical method. The back-propagation algorithm for training the weights in a multilayer net uses the steepest descent minimization procedure and the sigmoid threshold function. As an error rate is reduced, recognition rate is improved. Therefore we propose a method that is reduced an error rate.

  • PDF

Path Tracking Control Using a Wavelet Neural Network for Mobile Robots (웨이블릿 신경 회로망을 이용한 이동 로봇의 경로 추종 제어)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2414-2416
    • /
    • 2003
  • In this raper, we present a Wavelet Neural Network(WNN) approach to the solution of the tracking problem for mobile robots that possess complexity, nonlinearity and uncertainty. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome the problems caused by local minima of optimization and various uncertainties. This network structure is helpful to determine the number of the hidden nodes and the initial value of weights with compact structure. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by the gradient-descent method. Through computer simulations, we demonstrate the effectiveness and feasibility of the proposed control method.

  • PDF

Modeling of Chaotic Systems Using a DNA Coding Based Wavelet Neural Network (DNA 코딩 기반 웨이블릿 신경 회로망을 이용한 혼돈 시스템의 모델링)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2176-2178
    • /
    • 2003
  • This paper presents the intelligent modeling method of chaotic systems using a DNA coding based wavelet neural network(WNN). Generally the mathematical teaming method such as gradient descent method is used to adjust the parameters of WNN, which has much computational cost. To overcome this kind of problem, we use the DNA coding method as the learning method of WNN, and then combine it with the WNN. Finally, to verify the efficiency of our method, we apply the proposed DNA coding based wavelet neural network for modeling of Duffing system, which is a representative continuous-time chaotic system.

  • PDF

Direct Adaptive Control of Chaotic Systems Using a Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2187-2189
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of chaotic systems. The conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on a direct adaptive control method is proposed to control chaotic systems whose mathematical models are not available. The gradient-descent method is used for training a wavelet neural network controller. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic system.

  • PDF

A Study on Optimal Pole Design of Spoke type IPMSM with Concentrated Winding for Reducing the Torque Ripple by Experiment Design Method (실험계획법을 이용한 집중권 권선형 Spoke type IPMSM의 형상최적설계에 대한 연구)

  • Hwang, K.Y.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.46-49
    • /
    • 2009
  • An optimal design procedure is proposed to effectively reduce the torque ripple by optimizing the rotor pole shape of the spoke type IPMSM with concentrated winding. The procedure is composed of two steps. In step I, the steepest descent method (SDM) is used with only two design variables to rapidly approach the optimal shape. From the near optimal rotor shape as a result of the step I, the design variables are reselected and the drawing spline curves are utilized to explain more complex shape with the Kriging model in step II. By using an optimal design procedure, we show that the optimized rotor pole shape of the spoke type IPMSM effectively reduces the torque ripple while still maintaining the average torque.

  • PDF

Development of 4-D Trajectory Modeling using BADA (BADA를 활용한 4-D 경로 모델링법 개발)

  • Oh, Eun-Mi;Eun, Yeon-Ju;Jeon, Dae-Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Four dimensional(4-D) trajectory modeling is conducted based on flight plan. The flight plan is divided into several segments which represent certain operating flight modes. Thrust, drag and fuel consumption rate of an aircraft are calculated using BADA provided by Eurocontrol. The trajectory is modeled with the rate of climb/descent calculated with Total-Energy Equation. The simulation results with a typical aircraft and its flight plan indicate that the trajectory modeled corresponds well with the suggested flight plan. The performance profiles including total endurance time and time history for speed, thrust, drag and fuel consumption were also appropriately generated.