• Title/Summary/Keyword: Derived function

Search Result 3,735, Processing Time 0.031 seconds

An Asymptotic Solution and the Green's Function for the Transverse Vibration of Beams with Variable Properties

  • Kim, Yong-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.34-38
    • /
    • 2010
  • An analytical solution procedure for the dynamic response of beams with variable properties is developed by using an asymptotic solution and the Green's function. This asymptotic closed form solution is derived for the transverse vibration of beams under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is still found to be very accurate even in the case of large variation, such as step change in cross-section, mass, and tension. Therefore, this derived asymptotic closed form solution and the Green's function can be easily applied to find dynamic responses for various kind of beam vibration problems.

The numerical grid generation using the nearly orthogonal boundary-fitted curvilinear coordinate systems (근사직교 경계고정 곡선좌표계를 사용한 수치적 격자생성)

  • 맹주성;신종균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.561-565
    • /
    • 1988
  • In the present study, a new method of generating a nearly orthogonal boundary-fitted coordinate systems with automatic grid spacing control is introduced. Applications of the method to a two dimensional simply-connected region is then demonstrated. The nearly orthogonal boundary-fitted method has the following features, (a) Strong grid control in the .eta.-direction can be made, (b) The generated boundary-fitted coordinates are nearly orthoronal, (c) Both the .xi.-and .eta.-direction control function are mathematically derived. Especially the .eta.-direction control function is derived under the assumption that the .eta.-direction grid spacing is by far smaller than the .xi.-direction grid spacing when the .eta.-direction grid line is strongly clustered. (d) The grid control functions are dynamically adjusted by the metric scale factors imposed on the boundary. The control function is fully automatic and eliminates the need of user manipulation of the control function.

Computation of Incompressible Flows Using Higher Order Divergence-free Elements (고차의 무발산 요소를 이용한 비압축성 유동계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.9-14
    • /
    • 2011
  • The divergence-free finite elements introduced in this paper are derived from Hermite functions, which interpolate stream functions. Velocity bases are derived from the curl of the Hermite functions. These velocity basis functions constitute a solenoidal function space, and the gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into its solenoidal and irrotational parts, and the decoupled Navier-Stokes equations are then projected onto their corresponding spaces to form appropriate variational formulations. The degrees of the Hermite functions we introduce in this paper are bi-cubis, quartic, and quintic. To verify the accuracy and convergence of the present method, three well-known benchmark problems are chosen. These are lid-driven cavity flow, flow over a backward facing step, and buoyancy-driven flow within a square enclosure. The numerical results show good agreement with the previously published results in all cases.

The Prediction of Self-Excited Oscillation of a Fuzzy Control System Based on the Describing Function - Static Case (묘사함수를 이용한 퍼지 제어 시스템의 자기진동 현상의 예측 - 정적 경우)

  • 김은태;노흥식;김동연;박민용
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.90-96
    • /
    • 1998
  • The self-excited oscillation is the phenomenon which can be observed in the systems composed of nonlinear elements. The phenomenon is of fundamental importance in nonlinear systems and, as far as the design of a nonlinear system is concerned, it should be considered along with the stability analysis. In this paper, the oscillation of a system controlled by a static nonlinear fuzzy controller is theoretically addressed. First, the describing functionof a static fuzzy controller is derived and then, based on the derived describing function, self-excited oscillation of the system controlled by a static fuzzy controller is predicted. To obtain the describing function of the static fuzzy controller, a simple struture is assumed for the fuzzy controller. Finally, computer simulation is included to show an example where the describing function given in the paper is used to predict the self-excited oscillation of a fuzzy-control system.

  • PDF

A Vibration Control of a Flexible Beam using a Nonlinear Compensator with Complex Dual-Input Describing Function (복소쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 진동제어)

  • 권세현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.227-235
    • /
    • 1999
  • In this paper a vibration control fo a one-link flexible beam is considered. At first a state-space model for a flexible beam is derived by using the assumed-modes approach. Based on this model the transfer function between the applied torque and the tip deflection fo the beam is presented because it is convenient to apply our method. In general there exist some control difference due to flexibility of the beam so we adop a forward-passive controller to reduce these phenomena. And a complex dual-input describing function compensator is used to control the tip deflection. The stabiltiy and the performance of the closed-loop system are analyzed. Finally the validity of the derived model and the effectiveness of proposed controller are confirmed throuth simula-tions and experiments.

  • PDF

A NEW EXTENSION OF BESSEL FUNCTION

  • Chudasama, Meera H.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.277-298
    • /
    • 2021
  • In this paper, we propose an extension of the classical Bessel function by means of our ℓ-hypergeometric function [2]. As the main results, the infinite order differential equation, the generating function relation, and contour integral representations including Schläfli's integral analogue are derived. With the aid of these, other results including some inequalities are also obtained. At the end, the graphs of these functions are plotted using the Maple software.

Extending the calibration between empirical influence function and sample influence function to t-statistic (경험적 영향함수와 표본영향함수 간 차이 보정의 t통계량으로의 확장)

  • Kang, Hyunseok;Kim, Honggie
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.889-904
    • /
    • 2021
  • This study is a follow-up study of Kang and Kim (2020). In this study, we derive the sample influence functions of the t-statistic which were not directly derived in previous researches. Throughout these results, we both mathematically examine the relationship between the empirical influence function and the sample influence function, and consider a method to approximate the sample influence function by the empirical influence function. Also, the validity of the relationship between an approximated sample influence function and the empirical influence function is verified by a simulation of a random sample of size 300 from normal distribution. As a result of the simulation, the relationship between the sample influence function which is derived from the t-statistic and the empirical influence function, and the method of approximating the sample influence function through the empirical influence function were verified. This research has significance in proposing both a method which reduces errors in approximation of the empirical influence function and an effective and practical method that evolves from previous research which approximates the sample influence function directly through the empirical influence function by constant revision.

Hypothesis Testing for New Scores in a Linear Model

  • Park, Young-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.1007-1015
    • /
    • 2003
  • In this paper we introduced a new score generating function for the rank dispersion function in a general linear model. Based on the new score function, we derived the null asymptotic theory of the rank-based hypothesis testing in a linear model. In essence we showed that several rank test statistics, which are primarily focused on our new score generating function and new dispersion function, are mainly distribution free and asymptotically converges to a chi-square distribution.

Influence of an Observation on the t-statistic

  • Kim, Hong-Gie;Kim, Kyung-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.453-462
    • /
    • 2005
  • We derive the influence function on t statistic and find its feature; the influence function on t statistic has two forms depending on the value of ${\mu}_0$. Sample influence functions are used to verify the validity of the derived influence function. We use random samples from normal distribution to show the validity of the function. The simulation study proves that the obtained influence function is very accurate to in estimating changes in t statistic when an observation is added or deleted.

Asymptotic Relative Efficiency for New Scores in the Generalized F Distribution

  • Choi, Young-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.435-446
    • /
    • 2004
  • In this paper we introduced a new score generating function for the rank dispersion function in a multiple linear model. Based on the new score function, we derived the asymptotic relative efficiency, ARE(11, rs), of our score function with respect to the Wilcoxon scores for the generalized F distributions which show very flexible distributions with a variety of shape and tail behaviors. We thoroughly explored the selection of r and s of our new score function that provides improvement over the Wilcoxon scores.