• Title/Summary/Keyword: Derivation

Search Result 2,181, Processing Time 0.023 seconds

SEMIPRIME NEAR-RINGS WITH ORTHOGONAL DERIVATIONS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.303-310
    • /
    • 2006
  • M. $Bre\v{s}ar$ and J. Vukman obtained some results concerning orthogonal derivations in semiprime rings which are related to the result that is well-known to a theorem of Posner for the product of two derivations in prime rings. In this paper, we present orthogonal generalized derivations in semiprime near-rings.

  • PDF

APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.115-130
    • /
    • 2010
  • Let $\cal{A}$ be a unital Banach algebra. If f : $\cal{A}{\rightarrow}\cal{A}$ is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : $\cal{A}{\rightarrow}\cal{A}$ is anexactly quadratic derivation. On the other hands, let $\cal{A}$ and $\cal{B}$ be Banach algebras.Any approximately generalized homomorphism f : $\cal{A}{\rightarrow}\cal{B}$ corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.

ON THE STABILITY OF BI-DERIVATIONS IN BANACH ALGEBRAS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.959-967
    • /
    • 2011
  • Let A be a Banach algebra and let f : $A{\times}A{\rightarrow}A$ be an approximate bi-derivation in the sense of Hyers-Ulam-Rassias. In this note, we proves the Hyers-Ulam-Rassias stability of bi-derivations on Banach algebras. If, in addition, A is unital, then f : $A{\times}A{\rightarrow}A$ is an exact bi-derivation. Moreover, if A is unital, prime and f is symmetric, then f = 0.

JORDAN DERIVATIONS AND JORDAN LEFT DERIVATIONS OF BANACH ALGEBRAS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • In this paper we obtain some results concerning Jordan derivations and Jordan left derivations mapping into the Jacobson radical. Our main result is the following : Let d be a Jordan derivation (resp. Jordan left derivation) of a complex Banach algebra A. If d$^2$(x) = 0 for all x $\in$ A, then we have d(A) ⊆ red(A)

DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Choi, Young-Ho;Lee, Eun-Hwi;Ahn, Gil-Gwon
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.305-317
    • /
    • 2000
  • It is well-known that every derivation on a commutative Banach algebra maps into its radical. In this paper we shall give the various algebraic conditions on the ring that every Jordan derivation on a noncommutative ring with suitable characteristic conditions is zero and using this result, we show that every continuous linear Jordan derivation on a noncommutative Banach algebra maps into its radical under the suitable conditions.

ON PRIME AND SEMIPRIME RINGS WITH PERMUTING 3-DERIVATIONS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.789-794
    • /
    • 2007
  • Let R be a 3-torsion free semiprime ring and let I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3-derivation ${\Delta}:R{\times}R{\times}R{\rightarrow}R$ such that the trace is centralizing on I. Then the trace of ${\Delta}$ is commuting on I. In particular, if R is a 3!-torsion free prime ring and ${\Delta}$ is nonzero under the same condition, then R is commutative.

A NOTE ON DERIVATIONS OF ORDERED 𝚪-SEMIRINGS

  • Kim, Kyung Ho
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.779-791
    • /
    • 2019
  • In this paper, we consider derivation of an ordered ${\Gamma}$-semiring and introduce the notion of reverse derivation on ordered ${\Gamma}$-semiring. Also, we obtain some interesting related properties. Let I be a nonzero ideal of prime ordered ${\Gamma}$-semiring M and let d be a nonzero derivation of M. If ${\Gamma}$-semiring M is negatively ordered, then d is nonzero on I.

On Prime Near-rings with Generalized (σ,τ)-derivations

  • Golbasi, Oznur
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.249-254
    • /
    • 2005
  • Let N be a prime left near-ring with multiplicative center Z and f be a generalized $({\sigma},{\tau})-derivation$ associated with d. We prove commutativity theorems in prime near- rings with generalized $({\sigma},{\tau})-derivation$.

  • PDF