DOI QR코드

DOI QR Code

ON PRIME AND SEMIPRIME RINGS WITH PERMUTING 3-DERIVATIONS

  • Published : 2007.11.30

Abstract

Let R be a 3-torsion free semiprime ring and let I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3-derivation ${\Delta}:R{\times}R{\times}R{\rightarrow}R$ such that the trace is centralizing on I. Then the trace of ${\Delta}$ is commuting on I. In particular, if R is a 3!-torsion free prime ring and ${\Delta}$ is nonzero under the same condition, then R is commutative.

Keywords

References

  1. M. Bresar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no. 3, 361-397 https://doi.org/10.11650/twjm/1500407660
  2. J. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), no. 1, 122-126 https://doi.org/10.4153/CMB-1984-018-2
  3. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100 https://doi.org/10.2307/2032686
  4. J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38 (1989), no. 2-3, 245-254 https://doi.org/10.1007/BF01840009
  5. J. Vukman, Two results concerning symmetric bi-derivations on prime rings, Aequationes Math. 40 (1990), no. 2-3, 181-189 https://doi.org/10.1007/BF02112294

Cited by

  1. On Skew Centralizing Traces of Permuting n-Additive Mappings vol.55, pp.1, 2015, https://doi.org/10.5666/KMJ.2015.55.1.1
  2. n -Derivations of triangular algebras vol.439, pp.2, 2013, https://doi.org/10.1016/j.laa.2013.03.032
  3. Prime and semiprime rings with symmetric skew 3-derivations vol.87, pp.1-2, 2014, https://doi.org/10.1007/s00010-013-0208-8
  4. PAIR OF (GENERALIZED-)DERIVATIONS ON RINGS AND BANACH ALGEBRAS vol.46, pp.5, 2009, https://doi.org/10.4134/BKMS.2009.46.5.857
  5. SKEW n-DERIVATIONS ON SEMIPRIME RINGS vol.50, pp.6, 2013, https://doi.org/10.4134/BKMS.2013.50.6.1863
  6. ON PERMUTING 3-DERIVATIONS AND COMMUTATIVITY IN PRIME NEAR-RINGS vol.25, pp.1, 2010, https://doi.org/10.4134/CKMS.2010.25.1.001
  7. Derivation-homomorphisms vol.40, pp.13036149, 2016, https://doi.org/10.3906/mat-1505-55