본 논문에서는 기하학적 단서인 소실선과 텍스처를 이용하여 깊이 지도를 생성하는 방법을 제안한다. 소실선은 영상 내 존재하는 평행한 직선들에 의해 생성되는 것으로 영상에서 Gabor Filter를 통해 특정 각도의 경계를 추출하고 이를 허프 변환을 통해 직선을 추출하여 소실선을 검출해낸다. 검출된 소실선에 따라 초기 깊이 지도를 생성하고 텍스처 단서인 슈퍼 픽셀을 이용한 상대적 깊이 지도를 결합하여 최종 깊이 지도를 생성한다. 소실선을 이용한 초기 깊이지도와 슈퍼 픽셀을 이용한 상대적 깊이 지도를 결합함으로써 보다 신뢰성 있는 깊이 지도가 생성되었다.
This paper describes a 3-DTIP(3-D Tour Into Picture) using depth map for a Korean classical painting being composed of persons and landscape. Unlike conventional TIP methods providing 2-D image or video, our proposed TIP can provide users with 3-D stereoscopic contents. Navigating inside a picture provides more realistic and immersive perception. The method firstly makes depth map. Input data consists of foreground object, background image, depth map, foreground mask. Firstly we separate foreground object and background, make each of their depth map. Background is decomposed into polygons and assigned depth value to each vertexes. Then a polygon is decomposed into many triangles. Gouraud shading is used to make a final depth map. Navigating into a picture uses OpenGL library. Our proposed method was tested on "Danopungjun" and "Muyigido" that are famous paintings made in Chosun Dynasty. The stereoscopic video was proved to deliver new 3-D perception better than 2-D video.
RGB+D database has been widely used in object recognition, object tracking, robot control, to name a few. While rapid advance of active depth sensing technologies allows for the widespread of indoor RGB+D databases, there are only few outdoor RGB+D databases largely due to an inherent limitation of active depth cameras. In this paper, we propose a novel method used to build outdoor RGB+D databases. Instead of using active depth cameras such as Kinect or LIDAR, we acquire a pair of stereo image using high-resolution stereo camera and then obtain a depth map by applying stereo matching algorithm. To deal with estimation errors that inevitably exist in the depth map obtained from stereo matching methods, we develop an approach that estimates confidence of depth maps based on unsupervised learning. Unlike existing confidence estimation approaches, we explicitly consider a spatial correlation that may exist in the confidence map. Specifically, we focus on refining confidence feature with the assumption that the confidence feature and resultant confidence map are smoothly-varying in spatial domain and are highly correlated to each other. Experimental result shows that the proposed method outperforms existing confidence measure based approaches in various benchmark dataset.
마커리스 시스템의 경우 2차원 영상에서 깊이 값을 추정하기 위해서는 스테레오 비젼과 같이 고가의 장비를 통해 깊이 값을 추정하였다. 이에 단안 영상에서 깊이 값을 추정하여 객체를 증강하기 위해 소실점을 추출하고 상대적 깊이 값을 추정한다. 객체 증강에 있어 향상된 몰입감을 얻기 위해서는 가상의 객체들이 거리에 따라 서로 다른 크기로 그려져야 한다. 본 논문에서는 획득한 영상에서 소실점을 생성하고 깊이정보를 이용하여 증강된 객체를 서로 다른 크기로 증강하여 객체간 상호 몰입감을 향상시켰다.
Bokeh effect is a stylistic technique that can produce blurring the background of photos. This paper implements to produce a bokeh effect with a single image by post processing. Generating depth map is a key process of bokeh effect, and depth map is an image that contains information relating to the distance of the surfaces of scene objects from a viewpoint. First, this work presents algorithms to determine the depth map from a single input image. Then, we obtain a sparse defocus map with gradient ratio from input image and blurred image. Defocus map is obtained by propagating threshold values from edges using matting Laplacian. Finally, we obtain the blurred image on foreground and background segmentation with bokeh effect achieved. With the experimental results, an efficient image processing method with bokeh effect applied using a single image is presented.
고해상도 3차원 깊이 영상은 고품질의 3차원 방송을 위해 필요한 중요한 정보이다. 깊이 카메라는 정확한 깊이 정보를 실시간으로 얻을 수 있지만, 카메라 물리적 한계로 인해 저해상도의 깊이 영상만 이용한다. 본 논문에서는 저해상도의 깊이 영상과 색상 영상을 이용하여 색상 영상을 보간 하는 방법을 제안한다. 제안하는 방법은 랜덤워크 확률 모델을 이용하여 각 화소들이 초기 깊이값과 같을 확률값을 정의하여 가장 높은 확률을 가지는 초기 깊이값을 나머지 화소들에 복사한다. 제안한 방법은 인접한 화소들만을 이용하는 것이 아니라 경로를 따라 비용을 계산함으로써, 여러 화소에 걸친 색상의 변화율이 고려되어 물체의 경계 주변에서 색상 영역과 깊이 영상간의 경계가 일치하는 향상된 깊이 영상을 얻을 수 있다.
본 논문에서는 실제 영상과는 다른 특성을 지니는 깊이정보 맵의 효율적인 부호화 방법을 제안한다. 깊이정보 맵은 객체 내부 혹은 배경 부분에서 상당히 완만한 특성을 지니지만, 객체 경계 부분에서는 아주 날카로운 에지 성분이 존재한다는 특징이 있다. 그리고 깊이정보 맵을 비트평면 단위로 분리하였을 때, 비트평면 간 완전일치/반전일치되는 특성이 객체 경계 부분에서 자주 발생한다는 특징이 있다. 그래서 본 논문에서는 객체 경계 부분에서 비트평면의 이진 영상간 일치여부를 적절하게 이용하기 위하여 깊이정보 맵을 비트평면 단위로 분리하여 비트평면 간 적응적 XOR 연산을 이용한 블록 기반 비트평면 부호화 방법을 제안한다. 또한 비트평면 단위 영상 부호화 방법과 DCT 기반 동영상 압축 방법(H.264/AVC)의 장점을 적절하게 이용하기 위하여 블록 단위 비트평면 부호화 방법과 기존의 블록 단위 동영상 부호화 방법을 적응적으로 선택하여 부호화하였다. 실험 결과 제안하는 방법이 H.264/AVC보다 BD-PSNR이 0.9 dB ~ 1.5 dB 향상되었고 BD-rate가 11.8 % ~ 20.8 % 감소되었다. 또한 제안하는 방법이 블록 기반 적응적 깊이정보 맵 부호화 방법보다 BD-PSNR이 0.5 dB ~ 0.8 dB 향상되었고 BD-rate가 7.7 % ~ 12.2 % 감소되어 제안하는 방법의 우수함을 확인할 수 있었다. 또한 복원된 깊이정보 맵을 이용하여 생성된 가상 영상 간의 비교에서 제안하는 방법이 DCT 기반 동영상 압축 방법보다 주관적 화질이 향상된 것을 확인할 수 있었으며, 블록 기반 적응적 깊이정보 맵 부호화 방법과 비교하여 주관적 화질이 비슷하다는 것을 확인 할 수 있었다.
본 논문은 2D/3D 변환을 위한 객체 추출과 깊이정보(Depth-map) 생성기법에 관한 연구이다. 2D영상을 3D로 변환하기 위해서는 영상 객체 추출, 영상 거리 인식, 영상 생성, 재보정 단계를 거치게 되는데 본 논문에서는 영상 객체 추출과 영상 거리 인식에 해당하는 깊이정보를 생성하는 방법을 제안한다. 3D 영상으로의 변환은 2D 영상에서의 객체 추출과, 추출된 객체와 주변 배경을 구별하기 위한 거리감을 할당하는 깊이정보 생성이 중요하다. 보다 정확한 객체 추출과 깊이정보를 생성하기 위해 기존의 Optical flow에서 잡음을 제거한 방법을 제안하였다. 제안한 방법으로 2D 영상을 깊이정보가 포함된 영상으로 변환하여 영상의 깊이 정보가 추정됨을 알 수 있다.
Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권8호
/
pp.2068-2082
/
2023
With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.
깊이영상기반 렌더링(depth image-based rendering, DIBR)이란 색상 영상과 각 화소에 대응하는 거리 정보로 이루어진 깊이 영상(depth map)을 이용하여 가상 시점에서의 영상을 합성하는 기술을 말한다. DIBR을 이용하면 3차원 TV에 적합한 컨텐츠를 생성할 수 있지만, 가상 시점에서의 영상을 합성하는 과정에서 원영상에 존재하지 않는 영역, 즉, 비폐색(disocclusion) 영역이 드러나는 등 여러 가지 문제가 발생한다. 본 논문에서는 구조광으로 깊이 정보를 획득하는 Kinect 깊이 카메라를 이용한 가상시점 영상생성 기술을 제안한다. 깊이 카메라로부터 색상 영상과 그에 대응하는 깊이 영상을 획득한 다음, 깊이 영상에 대한 전처리 기술을 수행한다. 전처리가 끝난 깊이 영상은 중간 시점으로 워핑되고, 워핑 과정에서 발생하는 절삭 오차를 제거하기 위해 Median 필터링을 적용한다. 그런 다음, 색상 영상은 워핑된 깊이 영상의 깊이 값을 사용해서 중간 시점으로 워핑된다. 비폐색(disocclusion) 영역을 채우기 위해 배경 기반의 인페인팅 기술을 적용한다. 실험 결과를 통해, 본 논문에서 제안한 방법이 자연스러운 스테레오 영상을 생성한 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.