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Abstract 

 
With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method 
has achieved more advanced performances. However, when the upsampling rate is very large, 
it is difficult to capture the structural consistency between color features and depth features by 
these DMSR methods. Therefore, we propose a color-image guided DMSR method based on 
iterative depth feature enhancement. Considering the feature difference between high-quality 
color features and low-quality depth features, we propose to decompose the depth features into 
High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity 
of depth HF components and HF color features, only HF color features are used to enhance 
the depth HF features without using the LF color features. Before the HF and LF depth feature 
decomposition, the LF component of the previous depth decomposition and the updated HF 
component are combined together. After decomposing and reorganizing recursively-updated 
features, we combine all the depth LF features with the final updated depth HF features to 
obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multi-
stage depth map fusion reconstruction block, in which the cross enhancement module is 
introduced into the reconstruction block to fully mine the spatial correlation of depth map by 
interleaving various features between different convolution groups. Experimental results can 
show that the two objective assessments of root mean square error and mean absolute deviation 
of the proposed method are superior to those of many latest DMSR methods. 
 
 
Keywords: Convolution neural network, depth map super-resolution, high-low frequency 
decomposition, joint image filtering. 
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1. Introduction 

People often use scene depth information as a kind of auxiliary information to guide 
computer vision tasks to better complete scene analysis and understanding include self-driving 
vehicles, virtual reality, etc. Consumer-grade depth cameras are limited by hardware sensors. 
Hence, it is challenging to obtain high-quality and High-Resolution (HR) depth maps directly. 
Low-resolution (LR) depth maps always suffer from serious structural loss along image 
discontinuous areas, which makes it impossible to accurately reconstruct an HR depth map 
from only one LR depth map. In contrast to single Depth Map super-resolution (DMSR), color 
image-guided depth map Super-Resolution (SR) methods always use HR color images as prior 
information to guide structural restoration of LR depth maps by exploring structural similarity. 

Existing DMSR methods are approximately divided into three types: weighted filtering-
based methods, prior-regularized methods, and neural network-based methods. Weighted 
filtering-based depth map SR methods usually need to locally calculate filtering weight based 
on the spatial similarity between different pixels within each image block [1-3]. As a result, it 
often takes a long time to achieve DMSR reconstruction after pixel-by-pixel filtering. Prior-
regularized DMSR methods usually use data item and regularization items to construct 
objective functions and use the complex optimization algorithms for iterative reconstruction 
[4-6]. However, these kinds of approaches have high computational complexity, since these 
objective functions are always non-convex and it is hard to get the optimal solution for these 
DMSR approaches. 

Recently, many scholars have devoted themselves to the research of DMSR methods based 
on deep neural networks [7-10]. For example, Hui et al. [11] proposed a progressive up-
sampling network structure to extract HR color features and LR depth features and used the 
texture features rich in HR color features to eliminate the ambiguity of LR depth features. 
Unlike depth SR methods based on multi-scale feature extraction, He et al. [12, 13] used 
octave convolution to successively divide color features into two components at multiple 
stages, after which color features from various stages were aggregated with depth features 
from different layers respectively to progressively enhance the fine detail information of depth 
map features. However, due to the differences of illumination and inherent characteristics of 
different object surfaces in the depth maps and corresponding color images, it is difficult to 
transfer structural features. At the same time, the structures at the end of the reconstruction 
module in many depth maps SR networks [8, 10, 12, 14-16] are too simple, which greatly 
limits the accuracy improvement of depth map reconstruction. 

Based on the above analysis, we proposes a color-image guided DMSR method based on 
iterative depth feature enhancement. Specifically, to eliminate the interference of color LF 
information and adaptive filter unwanted color features, we propose to leverage the 
decomposed depth features to guide color feature extraction for high-efficiency structural 
transfer. Meanwhile, we adopt recursive feature disassembly and reassemble to gradually 
enhance depth feature in depth high-frequency updating block. Inspired by MobileNet and 
ShuffleNet [17, 18], we introduce criss-cross enhancement modules at the end of the network 
to fully explore depth spatial dependence by interleaving various features from different 
groups of convolution operations. 

The others of this article is arranged as below. Firstly, we review single DMSR methods 
and joint DMSR methods in Section 2. After that, we describe the implementation process of 
the proposed method in detail in Section 3, which is followed by the experimental results of 
objective quality contrast, visual quality contrast, and ablation research are presented in 
Section 4. At last, we give a conclusion in Section 5. 
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2. Related Work 

2.1 Single Depth Map Super-Resolution 
To obtain high-quality depth information, various single DMSR methods are studied by many 
researchers. For instance, Wang et al. [19] used local self-similarity of depth map to construct 
many paired image blocks, namely HR depth image block and LR depth edge block, and then 
they deduced high-resolution boundary map of depth map through Markov model. Finally, 
joint bilateral filtering was used to realize high-quality reconstruction of depth map. Chen et 
al. [20] used a convolution neural network to predict high-quality depth edge map and used it 
as the weight of the regularization term of the total change model to achieve better depth map 
reconstruction. 

Different from traditional single DMSR methods, many researchers are working on single 
depth map SR based convolution neural networks. For instance, Chen et al. [21] proposed an 
image SR reconstruction method based on the attention mechanism on the feature map, which 
reconstructed the original low-resolution image into a multi-scale SR image. In addition, the 
existing CNN-based image super-resolution methods have too many parameters while 
maintaining high-quality reconstruction, which is difficult to be applied to the edge-devices 
with limited computing and memory resources. To solve the above problems, Chen et al. [22] 
proposed a progressive feature aggregation network to gradually extract and enhance the 
multi-scale information of low resolution images. Du et al. [23] used a single model adapted 
to any scale factor to solve the image SR problem. Huang et al. [24] proposed a pyramid dense 
residual network for DMSR. This method used dense jump connection to aggregate different 
levels of features and used residual learning to iterative generate HR depth maps. Similarly, 
Song et al. [25] proposed an iterative residual learning-based depth map SR framework, which 
learned the High-Frequency (HF) components of the depth map in a progressive way from 
coarse to fine and constrained the learning of depth refinement module through total 
generalized variation regularization and consistency loss. In addition, Wu et al. [26] effectively 
enhanced feature representation of depth map by using iterative up-sampling and down-
sampling operations. Ye et al. [27] proposed a deep controllable slicing network with a group 
of slicing branches for accurate depth map recovery. To sum up, single DMSR methods cannot 
accurately reconstruct HR depth map with high quality, since there are not many dependable 
clues from a single LR depth map for depth map restoration, which lacks fine-details and edge-
structures when an up-sampling factor is extremely large. 

2.2 Joint Depth Map Super-Resolution 
By contrast, joint DMSR methods can use high structural similarity between HR color image 
and LR depth map to enhance depth boundary information. For instance, Ham et al. [4] 
reformulated guided image filtering as a converged quickly non-convex optimization problem 
by using structural information from the guided and input images. Barron et al. [1] cast depth 
super-resolution problem as an optimization problem restricted by image-dependent bilateral-
smooth term and data-fidelity term. Ferstl et al. [5] converted DMSR task as a convex 
optimization problem with the high-order regularization. Yang et al. [28] built a stereo-vision-
assisted model by using three constraints: non-local and local prior constraints, as well as 
stereo-disparity prior constraint. However, these traditional joint DMSR methods general 
depend on high complexity optimization and consume a lot of computational time, which 
greatly restricts their wide applications and deployments. 
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Recently, CNN-based methods have achieved remarkable performance in the field of 
DMSR [29-31]. For instance, Zuo et al. [14] constructed a deep convolution neural network 
to extract multi-scale intensity features and used dense connection, local and global residual 
learning to recover HF details from coarse to fine. After that, Ye et al. [16] iteratively used up-
sampling and down-sampling errors and applied an attention mechanism to gradually highlight 
depth boundary features. Guo et al. [32] used residual U-Net to combine the LR depth map 
and guide map features level by level at the decoding end through hierarchical feature-driven 
residual learning. Inspired by residual U-Net [32], Cao et al. [33] constructed a dual-branch 
auto-encoder attention network, which included guidance and target auto-encoder network. 
The first network was trained by both color and depth reconstruction loss, while the second 
network was only regularized by depth reconstruction loss. That is to say, a dual auto-encoder 
attention network was trained by multi-task loss. Similarly, Tang et al. [34] proposed a joint 
multi-task learning network to simultaneously implement depth map SR and monocular depth 
estimation, which was also optimized by multi-task loss. This network used a HF attention and 
content guidance module to make information interaction between the monocular depth 
estimation task and super-resolution reconstruction task of the depth map. Although these 
approaches can greatly improve the performance of DMSR task, it is still necessary to further 
study the DMSR topic, since higher-accuracy depth image can provide better geometric 
structure information for 3D reconstruction. 

3. The Proposed Method 
Although many DMSR methods can improve the resolution of low-quality LR depth map to a 
certain extent, while ensuring the clarity of the reconstructed depth map, feature differences 
and consistency between dual modalities of color and depth maps have not been fully mined 
by these methods. More importantly, the high-frequency information of color images has not 
been well leveraged to improve depth map quality. Our motivation comes from that the 
difference of color and depth high-frequency features is far smaller than that of color and depth 
features. Consequently, we propose a color-image guided DMSR method based on iterative 
depth feature enhancement. Given a LR depth map 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝜖𝜖𝑅𝑅𝑙𝑙∗ℎ∗1 and corresponding HR color 
map 𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ𝜖𝜖𝑅𝑅8𝑙𝑙∗8ℎ∗3, HR depth map 𝐷𝐷𝐻𝐻𝜖𝜖𝑅𝑅8𝑙𝑙∗8ℎ∗1 can be predicted by the proposed method, 
which consists of three blocks: sampling-based color HF prediction block, depth high-
frequency updating block, and multi-stage depth reconstruction block, as shown in Fig. 1. In 
this section, the implementation of 8x depth map SR will be taken as an example to introduce 
the proposed network. 

We first use Bicubic up-sampling to enlarge 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙 to the same scale as 𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ to obtain the 
initialized depth map 𝐷𝐷𝐼𝐼𝜖𝜖𝑅𝑅8𝑙𝑙∗8ℎ∗1. Then, we use two cascaded convolution modules to extract 
shallow color features and depth features from the HR color map 𝐶𝐶ℎ𝑖𝑖𝑖𝑖ℎ and initialized depth 
map 𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙 respectively. This module includes a series of operations, that is, 3×3 convolution 
operation, Leaky ReLU (LReLU) activation function and 1×1 convolution operation. Next, 
shallow color feature 𝐹𝐹𝑐𝑐(0) are sent into sampling-based color HF prediction block to estimate 
color HF features so as to eliminate the interference of color map low-frequency features. In 
this block, down-sampling convolution and up-sampling convolution are leveraged to extract 
color low-frequency features 𝐹𝐹𝑐𝑐𝐿𝐿 from shallow color feature 𝐹𝐹𝑐𝑐(0), after which we can obtain 
color high-frequency features 𝐹𝐹𝑐𝑐𝐻𝐻 by subtracting 𝐹𝐹𝑐𝑐𝐿𝐿 from 𝐹𝐹𝑐𝑐(0). 
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Fig. 1. The diagram of the proposed method. 

 
In the depth high-frequency updating block, we adopt octave convolution [13] as an 

efficient way of high-low frequency feature decomposition operation to divide depth shallow 
feature𝐹𝐹𝑑𝑑(0)  as the initial depth high-frequency features 𝐹𝐹𝑑𝑑(0)

𝐻𝐻  and the initial depth low-
frequency features 𝐹𝐹𝑑𝑑(0)

𝐿𝐿 . In the first stage of this block, the initial depth high-frequency 
features 𝐹𝐹𝑑𝑑(0)

𝐻𝐻  and color high-frequency features 𝐹𝐹𝑐𝑐(0)
𝐻𝐻  are concatenated along channel 

dimension, after which the 3×3 convolution operation is used to combine color and depth 
high-frequency features as the enhanced depth high-frequency features. At the same time, the 
bilinear interpolation operation with an up-sampling factor of 2 is used to restore the initial 
depth low-frequency features 𝐹𝐹𝑑𝑑(0)

𝐿𝐿  to the same resolution as 𝐹𝐹𝑑𝑑(0), which is followed by the 
3×3 convolution operation to decrease the channel number of convolution features. Finally, 
the restored depth low-frequency features 𝐹𝐹𝑑𝑑(0)

𝐿𝐿  and the updated depth high-frequency features 
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are added together element by element to obtain the updated depth features 𝐹𝐹𝑑𝑑(1) in the first 
stage. Analogously, we can obtain depth features 𝐹𝐹𝑑𝑑(2) and 𝐹𝐹𝑑𝑑(3) in the second and third stages. 
Finally, at the end of depth high-frequency updating block, a sequential concatenation 
operation and 1×1 convolution operation are used to aggregate depth low-frequency features 
at each stage with 𝐹𝐹𝑑𝑑(3) along the channel dimension to obtain 𝑅𝑅𝑑𝑑. The whole process of depth 
high-frequency updating block can be written as follows: 

𝐹𝐹𝑑𝑑(0) = 𝑓𝑓𝑐𝑐(1)(𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑓𝑓𝑐𝑐(3)(𝐷𝐷𝐼𝐼))),  
Fc(0) = fc(1)(fLReLU(fc(3)(Chigh))),  

Fc(i)
H = fc(3)(Fc(0) − f2x↑(f2x↓(Fc(0)))),  

Fd(i)
H , Fd(i)

L = fDHLH(Fd(i)),  
Fd(i+1) = fc(3)(C(Fd(i)

H , Fc(i)
H )) + fc(3)(fBILI(Fd(i)

L )), (i = 0,1,2). (1) 
in which 𝑓𝑓𝑐𝑐(3), 𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑓𝑓𝑐𝑐(1) denotes 3×3 convolution, Leaky ReLU activation function 
and 1 × 1 convolution respectively. 𝑓𝑓𝐷𝐷𝐻𝐻𝐿𝐿𝐻𝐻  and 𝑓𝑓𝐵𝐵𝐼𝐼𝐿𝐿𝐼𝐼  denote Depth High-Low Frequency 
(DHLF) feature decomposition and bilinear interpolation operation respectively. C denotes 
concatenation operation along channel dimension. 𝑓𝑓2𝑥𝑥↑ and 𝑓𝑓2𝑥𝑥↓ denote the 2x up-sampling 
and 2x down-sampling operations. These two operations denote the convolution with a stride 
of 2 and transposed-convolution respectively. 

In multi-stage depth reconstruction block, three sequential feature enhancement modules 
in turn are used to enhance the depth feature of 𝑅𝑅𝑑𝑑 for multi-stage enhancement. The first 
sequential module uses Leaky ReLU and 3×3 convolution to extract non-linear features 𝑅𝑅𝑛𝑛 
from 𝑅𝑅𝑑𝑑. At the same time, we use a 3×3 convolution to extract linear features 𝑅𝑅𝑙𝑙. Next, we 
add the linear features 𝑅𝑅𝑙𝑙 with nonlinear features 𝑅𝑅𝑛𝑛 element by element, after which depth 
spatial correlation is fully mined by the criss-cross enhancement (CCE) module. This module 
interleaves various features to obtain the enhanced depth feature 𝑅𝑅𝑑𝑑(1). By analogy, we can 
get the depth enhancement features 𝑅𝑅𝑑𝑑(2) and 𝑅𝑅𝑑𝑑(3) in the second and third stages. Finally, the 
depth enhancement feature 𝑅𝑅𝑑𝑑(3) in the third stage is processed by an output convolution 
operation, and then its output is added element by element with 𝐷𝐷𝐼𝐼  to obtain the final high-
resolution reconstruction depth map 𝐷𝐷𝐻𝐻. The procedure of multi-stage depth reconstruction 
block can be written as: 

Rd(1) = fCCE(fc3(fLReLU(Rd))) + fc3(Rd),  
Rd(2) = fCCE(fc3(fLReLU(Rd(1)))) + fc3(fc3(Rd)),  

Rd(3) = fCCE(fc3(fLReLU(Rd(2)))) + fc3(fc3(fc3(Rd))),  
DH = Rd(3) + DI. (2) 

in which 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶 denotes the criss-cross enhancement module. 

3.1 Criss-Cross Enhancement Module 
Generally, the standard convolution layer has higher computational complexity than a 
sequential of group convolution and point-wise convolution, which are widely applied in the 
lightweight network models such as MobileNet and ShuffleNet [17, 18]. Inspired by these 
models, we propose a lightweight Criss-Cross Enhancement (CCE) module to fully mine 
spatial and channel correlation between different features from different group convolutions, 
as displayed in Fig. 2. Next, we will introduce the CCE module in the multi-stage deep 
reconstruction block. The input of the first CCE module is 𝑍𝑍𝑢𝑢 = 𝑅𝑅𝑙𝑙(0) + 𝑅𝑅𝑛𝑛(0). In this module, 
the group number of group convolution in the upper branch is 4 for group-feature extraction 
to obtain 𝑍𝑍𝐺𝐺=4, and the features of the Leaky ReLU activated 𝑍𝑍𝐺𝐺=4 are extracted along the 
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channel dimension by point-wise convolution, and then its output is added with 𝑍𝑍𝑢𝑢  by a 
residual connection to obtain 𝑍𝑍4. Then, we add 𝑍𝑍𝑢𝑢 with 𝑍𝑍𝐺𝐺=4 together, and the resulting 𝑍𝑍𝑚𝑚 is  
sent to the middle branch with a group number of 8, and the features are extracted by 
convolution to obtain 𝑍𝑍𝐺𝐺=8. The subsequent operations are the same as the upper branch, and 
then we can obtain the final output 𝑍𝑍8 of the middle branch. Similar to the middle branch, in 
the lower branch, we add 𝑍𝑍𝑢𝑢  with 𝑍𝑍𝐺𝐺=8  together, and the resulting 𝑍𝑍𝑑𝑑  is successively 
processed through group convolution and point-wise convolution with a group number of 16, 
and the 𝑍𝑍𝑑𝑑 and 𝑍𝑍16

𝑝𝑝  are added together to obtain 𝑍𝑍16. Finally, a concatenation operation and an 
output convolution are respectively used to aggregate 𝑍𝑍4 , 𝑍𝑍8  and 𝑍𝑍16 and perform feature-
channel shrinkage so as to obtain the enhanced depth feature 𝑅𝑅𝑑𝑑(1). 

 
Fig. 2. The network structure of the proposed criss-cross enhancement (CCE) module. 

3.2 Loss Function 
For various image restoration tasks, mean square error loss and mean absolute error loss 
functions are widely used to constrain the network training. However, it has been proved that 
image restoration network trained with 𝐿𝐿1  norm-regularized loss function obtains better 
performance than that with 𝐿𝐿2 norm-regularized loss function. Therefore, the 𝐿𝐿1 norm is used 
to constrain data loss 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 to supervise the learning of the proposed depth map SR network, 
which can be written as: 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �𝐷𝐷ℎ𝑖𝑖𝑖𝑖ℎ − 𝐷𝐷𝐺𝐺𝐺𝐺�1. (3) 
where ‖∙‖1 represents the 𝐿𝐿1 norm, 𝐷𝐷ℎ𝑖𝑖𝑖𝑖ℎ is the depth map predicted by the proposed network, 
and 𝐷𝐷𝐺𝐺𝐺𝐺 is the corresponding Ground-Truth (GT) image. 

4. Experimental Results and Analysis 
In this section, we will first briefly describe the implementation details of the proposed method. 
Then, the proposed method is compared with a lot of traditional and CNN-based approaches 
to show the absolute advantages of the proposed method in terms of Root Mean Square Error 
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(RMSE) and Mean Absolute Deviation (MAD). At last, the irreplaceability of each module in 
the proposed network is verified by ablation studies. 

4.1 Implementation Details 
In the proposed method, two extensively-used RGB-D datasets are chosen for training and 
testing, that is, the Middlebury RGB-D dataset and NYU-v2 RGB-D dataset. Specifically, the 
top 1000 pairs of color and depth maps of NYU-v2 RGB-D dataset are used as the training 
dataset, while the remaining 449 pairs of color+depth maps are used to compare the 
performance of different depth map SR approaches. The Middlebury RGB-D dataset includes 
36 pairs of RGB-D images, among which 6, 21, and 9 images come from the Middlebury 
(2001), (2006), and (2014) datasets respectively. These images are used as the training dataset. 
Middlebury testing dataset is composed of several color and depth maps (Art, Books, Moebius, 
Dollars, Laundry, and Reindeer) from the Middlebury (2005) dataset. The Bicubic 
interpolation method is used to down-sample the ground-truth depth maps to obtain 
corresponding LR depth maps. For training, the proposed network is optimized with the Adam 
optimizer. Additionally, we set the initial learning rate of the network to be 1e-4, and the 
learning rate of 100 epochs per iteration is multiplied by 0.1. Our method is implemented by 
using the deep learning framework of PyTorch on the NVIDIA TITAN RTX GPU. 

4.2 Performance Comparison on NYU-v2 RGB-D Dataset 
To prove the superiority of the our method, we compare it with many state-of-the-art DMSR 
methods in term of the objective quality at various up-scaling factors (4x, 8x, 16x). Traditional 
depth map SR methods have Bicubic interpolation method, JBU [3], TGV [5], MRF [6], GF 
[2], FBS [1], Park [35] and Ham [4], while deep learning-based depth map SR methods include 
DJF [15], DMSG [11], DJFR [9], FDSR [12], DKN [10], FDKN [10], Bridge [34], DSR [36], 
and DAEA [33]. Table 1 lists the RMSE values of these methods under different scale factors 
(4x, 8x, 16x). As given in Table 1, the performances of CNN-based depth SR approaches are 
much better than those of the traditional depth SR methods. This comes from that traditional 
methods often depends on highly complex optimization models, which greatly limits their 
further application and deployment. Specifically, the greatest performance method in the 
traditional methods is JBU [3], and the RMSE values at different up-scaling factors (4x, 8x, 
16x) are 4.07, 8.29, and 13.35 respectively. Among the deep learning-based depth map SR 
methods, DJF [15] has the worst performance. Compared with the traditional depth map SR 
method JBU [3], it can be clearly found that the performance of DJF [15] is much better than 
JBU [3] at different up-sampling factors (4x, 8x, 16x). From the above analysis, it can be found 
that the objective performance index of the deep learning-based methods is far better than that 
of the traditional ones. 

Among deep learning-based methods, our method can achieve the best performance for 
depth map SR under different scale factors. Specifically, at 4x, compared with DSR [36], the 
RMSE of our method is decreased by 0.38 from 1.49 to 1.11, and the performance of our 
method is improved by 26%. At 8x, compared with the Bridge method [34], the RMSE value 
is decreased by 0.39 from 2.63 to 2.24, and our performance is improved by 15%. Different 
from depth SR at the up-scaling factor of 4x and 8x, to alleviate loss problem of detail and 
structure information under large-scale sampling for color guided depth map SR, when 16x 
depth map SR, we use two-level depth map SR to realize 16x joint depth map SR. Specifically, 
we apply the 4x depth map SR network structure twice to form a cascaded two-stage 16x depth 
map SR network. At 16x, compared with DAEA [33], the RMSE of the proposed method is 
decreased by 0.91 from 4.55 to 3.64, and our performance is improved by 20%. From the 
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above objective performance comparison, we can found that the proposed method is superior 
to many advanced depth map SR methods for 4x, 8x, and 16x depth SR. 
 
Table 1. Objective performance comparison between classic methods and proposed method in term of 

RMSE on NYU-v2 dataset. 
Method Bicubic MRF[6] GF[2] JBU[3] TGV[5] FBS[1] 

4x 8.16 7.84 7.32 4.07 6.98 4.29 
8x 14.22 13.98 13.62 8.29 11.23 8.94 

16x 22.32 22.22 22.03 13.35 28.13 14.59 
Method Park[35] Ham[4] DJF[15] DMSG[11] DJFR[9] DKN[10] 

4x 5.20 5.27 3.54 3.02 3.38 1.62 
8x 9.56 12.31 6.20 5.38 5.86 3.26 

16x 18.10 19.24 10.21 9.17 10.11 6.51 
Method FDKN[10] FDSR[12] DSR[36] DAEA[33] Bridge[34] Our(32) 

4x 1.86 1.61 1.49 1.58 1.54 1.11 
8x 3.58 3.18 2.73 2.79 2.63 2.24 

16x 6.96 5.86 5.11 4.55 4.98 3.64 
 
Table 2. Objective performance comparison between classic methods and proposed method in term of 

MAD on Middlebury 2005 dataset. 
Method CLMF[37] JGU[38] PB[39] TGV[5] CDLLC[40] 

4x 0.447 0.338 0.557 0.430 0.338 
8x 0.783 0.590 0.920 0.838 0.540 

16x 1.515 1.083 1.557 2.107 0.947 
Method EG[41] DMSG[11] DSR[36] Bridge[34] CGN[42] 

4x 0.295 0.280 0.163 0.190 0.198 
8x 0.490 0.515 0.355 0.345 0.350 

16x 0.902 1.005 0.830 0.765 0.762 
Method MFR[7] MIG[29] RDN[14] RMIG[8] Ours(64) 

4x 0.253 0.188 0.203 0.212 0.142 
8x 0.417 0.340 0.377 0.343 0.317 

16x 0.782 0.748 0.728 0.833 0.675 
 

 
Fig. 3. The visual comparison of the 8x up-sampling results on 1002-th depth map from NYU-v2 

RGB-D Dataset. 
 

 
 Fig. 4. The visual comparison of the 8x up-sampling results on the Art depth map. 
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To further exhibit the superiority of the proposed method in visual quality comparison, we 

compare different depth map SR methods. As shown in Fig. 3, it can be clearly seen that the 
predicted depth images by several depth SR methods such as FBS [1], GF [2] and MRF [6] 
have serious boundary distortion problems, when they are compared with GT images, whose 
boundary information is sharp and object surface has a characteristic of piece-wise smoothness. 
The boundary regions of these predicted depth images have large protrusions and blurring 
outcomes. Meanwhile, the depth maps predicted by Ham [4], JBU [3] and DMSG [11] have 
dense yet small serration. In contrast, the results predicted by DJF [15], Park [35], TGV [5], 
FDSR [12], FDKN [10] and DKN [10] are more clear, but there are still subtle variations, as 
compared with the GT images. From the above visual contrast, it can be clearly found that the 
proposed method has an advantage in the detail restoration of the reconstructed depth map. 
 

 
 Fig. 5. The visual comparison of the 8x up-sampling 3D results on the Art depth map. 

4.3 Performance Comparison on Middlebury RGB-D Dataset 
Under diverse super-resolution factors, we compare our method with several state-of-the-art 
methods, including traditional DMSR methods such as TGV [5], CDLLC [40], CLMF [37], 
JGU [38], PB [39], and EG [41], as well as many deep learing-based depth map SR methods. 
These CNN-based methods include CGN [42], MFR [7], DMSG [11], DSR [36], Bridge [34],  
MIG [29], RDN [14], and RMIG [8]. Table 2 provides the comparison of the MAD values of 
these methods under different scale factors (4x, 8x, 16x). 

As shown in Table 2, EG [41] has the best performance among the traditional methods. 
Under different scale factors (4x, 8x, 16x), the MAD value of EG [41] in the traditional 
methods is slightly lower than that of DMSG [11] at 8x and 16x, and DMSG [11] has the worst 
performance in CNN methods. Therefore, it can be clearly found that the MAD value of 
traditional methods is usually higher than that of deep learing-based methods. In addition, the 
objective performance index of the this method is superior to other deep learning-based 
methods. Specifically, at the 4x DMSR, compared with DSR [36], the MAD value of our 
method is reduced by 0.021 and the performance is improved by 13%.  At 8x depth map SR, 
compared with MIG [29], the MAD value of the proposed method is decreased by 0.023 and 
the performance is improved by 7%. When the up-scaling factor is 16 for depth map SR, the 
proposed method reduces the MAD value by 0.053 compared with RDN [14], and the 
performance improves by 7%. Table 2 shows that the proposed method's performance is better 
than the state-of-the-art methods when these methods are tested on the Middlebury RGB-D 
dataset.  

Next, to further show the advantages of the proposed method, we provide 2D depth map 
visual comparisons of the proposed method and several state-of-the-art methods such as CGN 
[42], MFR [7], MIG [29], RDN [14] and RMIG [8]. From the red box in Fig. 4, it can be 
clearly found that the depth maps predicted by different methods have some differences in 
details. For instance, in depth maps predicted by CGN [42], MFR [7], MIG [29], RDN [14] 
and RMIG [8], the boundary of the depth map at the intersection of the rod and ring column is 
blurred. In contrast, this method can well recover depth boundaries of tiny objects. In addition, 
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to demonstrate the superiority of the proposed method, we use the above-mentioned methods 
and the Art depth map obtained by this method with the corresponding high-resolution color 
image to reconstruct three-dimensional visual images. As shown in Fig. 5, the enlarged image 
in the red box clearly shows that there are serious twists in the bars for the results of CGN [42], 
MFR [7], MIG [29], RDN [14] and RMIG [8]. Since the above method reconstructs three-
dimensional visual images using the same high-resolution color images, it can be demonstrated 
that the depth SR images predicted by this method are more similar to the GT images. 

 
Table 3. Ablation studies of the proposed method 

Components CCE DHLF CHLF PSNR SSIM RMSE MAD 
Ours-1 × √ √ 40.65 0.9814 2.44 0.99 

Ours-2 √ × √ 37.35 0.9765 3.60 1.31 

Ours-3 √ √ × 41.30 0.9828 2.26 0.93 

Ours-4 √ × × 37.13 0.9762 3.68 1.34 

Ours(32) √ √ √ 41.40 0.9830 2.24 0.92 
 

 
Fig. 6. The visual comparison of ablation studies for the proposed method testing on the 1005-th depth 

map from NYU-v2 RGB-D Dataset. 
 

4.4 Ablation Studies 
To verify the superiority of sampling-based color HF prediction block, depth high-frequency 
updating block, and criss-cross enhancement (CCE) module, we conduct a series of ablation 
studies on the NYU-v2 dataset to verify the importance of each module in the proposed method, 
as shown in Table 3. We can get the Ours-1 model when the CCE module is removed and 
other key modules remain unchanged. PSNR and SSIM of Ours-1 are reduced by 0.75 and 
0.0016 respectively. The RMSE and MAD values of Ours-1 are increased by 0.2 and 0.07 
respectively. To observe the influence of DHLF feature decomposition and Color High-Low 
Frequency (CHLF) feature decomposition on network performance. Here, DHLF feature 
decomposition refers to depth high-frequency updating block, while CHLF feature 
decomposition denotes sampling-based color HF prediction block. We can get Ours-2 and 
Ours-3 when DHLF feature decomposition and CHLF feature decomposition are removed 
respectively. If both of them are removed, we can get Ours-4 model. When DHLF feature 
decomposition or CHLF feature decomposition is removed, PSNR and SSIM of Ours-2/Ours-
3 decrease by 4.05/0.10 and 0.0065/0.0002 respectively. Meanwhile, the RMSE and MAD of 
Ours-2 increase by 1.36 and 0.39 respectively, while RMSE and MAD of Ours-3 increase by 
0.02 and 0.01 respectively. When DHLF feature decomposition and CHLF feature 
decomposition are removed, PSNR and SSIM decrease by 4.27 and 0.0068. And the RMSE 
and MAD increase by 1.44 and 0.42 respectively. From these results, it can be found that these 
three blocks are essential for high-quality depth map SR. 
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As shown in Fig. 6, we compare the visual effects of 8x depth SR under different 
configurations of our method, when this method is tested on the NYU-v2 dataset. From the 
enlarged detail of the red box in Fig. 6, it is obviously seen that the results of Ours-2 and Ours-
4 have excessive smoothing effects, and they lack fine structure and boundary details as 
compared with the super-resolved depth image predicted by our entire model. Although Ours-
1 and Ours-3 are relatively clear, there are still subtle differences of the super-resolved depth 
images between Ours-1/Ours-3 and the proposed entire model. These visual quality 
comparisons of the ablation study further demonstrate the effectiveness of each component of 
the proposed method. 

5. Conclusion 
In this paper, we propose a color-image guided DMSR method based on iterative depth feature 
enhancement. Considering the feature difference between high-quality color features and low-
quality depth features, we decompose and reorganize the high-resolution color map and low-
resolution depth map many times to achieve the purpose of color map guided depth map 
enhancement. Specifically, the high-frequency detail features obtained from the sampled color 
high-frequency prediction block are fed into the depth high-frequency updating block stage by 
stage, so as to realize the update of low-quality depth high-frequency details. Finally, a multi-
stage depth reconstruction block is proposed to estimate the final high-quality depth map. A 
large number of experimental results show that our method has better performance than many 
advanced depth mapping SR methods. Considering that high-resolution color images may be 
affected by the dark environment in daily shooting, our future work will study the brightness 
recovery of DMSR and low-illumination color maps at the same time. 
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