• 제목/요약/키워드: Depth segmentation

검색결과 175건 처리시간 0.024초

Active Contours Level Set Based Still Human Body Segmentation from Depth Images For Video-based Activity Recognition

  • Siddiqi, Muhammad Hameed;Khan, Adil Mehmood;Lee, Seok-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2839-2852
    • /
    • 2013
  • Context-awareness is an essential part of ubiquitous computing, and over the past decade video based activity recognition (VAR) has emerged as an important component to identify user's context for automatic service delivery in context-aware applications. The accuracy of VAR significantly depends on the performance of the employed human body segmentation algorithm. Previous human body segmentation algorithms often engage modeling of the human body that normally requires bulky amount of training data and cannot competently handle changes over time. Recently, active contours have emerged as a successful segmentation technique in still images. In this paper, an active contour model with the integration of Chan Vese (CV) energy and Bhattacharya distance functions are adapted for automatic human body segmentation using depth cameras for VAR. The proposed technique not only outperforms existing segmentation methods in normal scenarios but it is also more robust to noise. Moreover, it is unsupervised, i.e., no prior human body model is needed. The performance of the proposed segmentation technique is compared against conventional CV Active Contour (AC) model using a depth-camera and obtained much better performance over it.

SoC 시스템에서의 깊이 영상 분할을 위한 효율적인 설계 구성 방법 (Efficient Implementation Method Of Depth Image Segmentation In SoC System)

  • 성지목;김봉성;강봉순
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.122-127
    • /
    • 2016
  • This paper propose implementation method of SoC system for efficient depth image segmentation. SoC systems are combined platform in the form of the Software and Hardware IP. In order to perform effectively, the user to determine the operation of the configuration of each part. In this paper, we implemented a segmentation of depth images taken by the infrared sensor at APU of SoC system. The proposed method efficiently implements high performance and low power in SoC system. Proposed method that using software parts of SoC system is capable to use at several depth image processing systems.

깊이 슈퍼 픽셀을 이용한 실내 장면의 의미론적 분할 방법 (Semantic Segmentation of Indoor Scenes Using Depth Superpixel)

  • 김선걸;강행봉
    • 한국멀티미디어학회논문지
    • /
    • 제19권3호
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper, we propose a novel post-processing method of semantic segmentation from indoor scenes with RGBD inputs. For accurate segmentation, various post-processing methods such as superpixel from color edges or Conditional Random Field (CRF) method considering neighborhood connectivity have been used, but these methods are not efficient due to high complexity and computational cost. To solve this problem, we maximize the efficiency of post processing by using depth superpixel extracted from disparity image to handle object silhouette. Our experimental results show reasonable performances compared to previous methods in the post processing of semantic segmentation.

Hand Segmentation Using Depth Information and Adaptive Threshold by Histogram Analysis with color Clustering

  • Fayya, Rabia;Rhee, Eun Joo
    • 한국멀티미디어학회논문지
    • /
    • 제17권5호
    • /
    • pp.547-555
    • /
    • 2014
  • This paper presents a method for hand segmentation using depth information, and adaptive threshold by means of histogram analysis and color clustering in HSV color model. We consider hand area as a nearer object to the camera than background on depth information. And the threshold of hand color is adaptively determined by clustering using the matching of color values on the input image with one of the regions of hue histogram. Experimental results demonstrate 95% accuracy rate. Thus, we confirmed that the proposed method is effective for hand segmentation in variations of hand color, scale, rotation, pose, different lightning conditions and any colored background.

움직임 검출과 영역 분할을 이용한 실시간 입체 영상 변환 (Real-Time Stereoscopic Image Conversion Using Motion Detection and Region Segmentation)

  • 권병헌;서범석
    • 디지털콘텐츠학회 논문지
    • /
    • 제6권3호
    • /
    • pp.157-162
    • /
    • 2005
  • 본 논문에서는 2차원 정지 영상 및 동영상에서 블록 정합을 이용한 움직임 검출과 영역 분할을 통하여 생성한 깊이 지도를 이용하여 입체 영상으로 실시간 변환하는 방법을 제안하였다. 성능 평가는 움직임 객체의 깊이 지도와 절대 시차 차이 영상을 생성하여 기존의 변환 방법과 비교를 통해 제안한 방식의 우수성을 입증하였다.

  • PDF

물체 파지점 검출 향상을 위한 분할 기반 깊이 지도 조정 (Segmentation-Based Depth Map Adjustment for Improved Grasping Pose Detection)

  • 신현수;무하마드 라힐 아파잘;이성온
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.16-22
    • /
    • 2024
  • Robotic grasping in unstructured environments poses a significant challenge, demanding precise estimation of gripping positions for diverse and unknown objects. Generative Grasping Convolution Neural Network (GG-CNN) can estimate the position and direction that can be gripped by a robot gripper for an unknown object based on a three-dimensional depth map. Since GG-CNN uses only a depth map as an input, the precision of the depth map is the most critical factor affecting the result. To address the challenge of depth map precision, we integrate the Segment Anything Model renowned for its robust zero-shot performance across various segmentation tasks. We adjust the components corresponding to the segmented areas in the depth map aligned through external calibration. The proposed method was validated on the Cornell dataset and SurgicalKit dataset. Quantitative analysis compared to existing methods showed a 49.8% improvement with the dataset including surgical instruments. The results highlight the practical importance of our approach, especially in scenarios involving thin and metallic objects.

다중시점 환경에서의 슈퍼픽셀 세그먼테이션 기반 깊이 영상 개선 알고리즘 (Depth Map Correction Algorithm based on Segmentation in Multi-view Systems)

  • 정우경;한종기
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.954-964
    • /
    • 2020
  • 실감형 미디어에서 현실감을 느끼게 하는 가장 중요한 요소는 깊이 정보이다. 따라서 고품질의 실감형 미디어를 제작하기 위해서는 고품질의 깊이 정보를 획득하는 것이 필수적이다. 본 논문에서는 고품질의 깊이 정보를 획득하기 위하여 다중 시점 환경에서 깊이 지도를 개선하기 위하여 깊이 지도를 여러 개의 세그먼트로 분할 및 다중 시점간의 관계를 고려하는 알고리즘을 제안한다. 제안된 알고리즘은 슈퍼픽셀 세그먼테이션 기법을 사용하여 기준 시점의 깊이 지도를 여러 세그먼트로 나누고, 각 세그먼트를 인접 시점으로 투영한다. 이후 투영된 세그먼트의 정보를 이용하여 인접 시점의 깊이 지도를 평면 추정을 이용하여 개선한 후, 기준 시점으로 역투영된다. 여러 개의 인접 시점에 대해 이 과정을 반복하여 개선된 인접 시점들의 값들과 기준 시점의 초기 깊이 지도를 가중치 합으로 갱신하여 깊이 지도를 개선한다. 기존 다중 시점 스테레오 비전 알고리즘에 제안된 알고리즘을 적용한 시뮬레이션을 통해 제안된 알고리즘의 결과가 주관적 및 객관적으로 기존 알고리즘을 능가하는 것을 보인다.

Active Min-Depth Filter를 이용한 비분할 장애물 최근접 점 검출 (Detection of Nearest Points without Obstacle Segmentation using Active Min-Depth Filter)

  • 박경균;정문호
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.77-84
    • /
    • 2023
  • 자율 주행 로봇에서 장애물 회피 기능은 핵심적인 것이다. 포텐셜 필드는 이 분야에 가장 많이 사용되어온 방법이다. 이것은 장애물의 최근접 점을 실시간으로 계산해야 하는데 이를 위해 거리 센서 데이터 프로파일로 부터 안정적으로 장애물 영역을 분할해야 하는 어려움이 있다. 본 논문에서는 분할 없이 각 장애물의 최근접 점을 실시간으로 구할 수 있는 Active Min-Depth Filter를 제안한다. 다양한 센서 노이즈 환경에 대한 시뮬레이션을 통해 Active Min-Depth Filter의 강인성을 확인할 수 있었고 실제 이동 로봇 적용하여 성공적인 결과를 얻었다.

학습기반의 객체분할과 Optical Flow를 활용한 2D 동영상의 3D 변환 (2D to 3D Conversion Using The Machine Learning-Based Segmentation And Optical Flow)

  • 이상학
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.129-135
    • /
    • 2011
  • 본 논문에서는 2D 동영상을 3D 입체영상으로 변환하기 위해서 머신러닝에 의한 학습기반의 객체분할과 객체의 optical flow를 활용하는 방법을 제안한다. 성공적인 3D 변환을 가능하게 하는 객체분할을 위해서, 객체의 칼라 및 텍스쳐 정보는 학습을 통해 반영하고 움직임이 있는 영역 위주로 객체분할을 수행할 수 있도록 optical flow를 도입한 새로운 에너지함수를 설계하도록 한다. 분할된 객체들에 대해 optical flow 크기에 따른 깊이맵을 추출하여 입체영상에 필요한 좌우 영상을 합성하여 생성하도록 한다. 제안한 기법으로 인해 효과적인 객체분할과 깊이맵을 생성하여 2D 동영상에서 3D 입체동영상으로 변환됨을 실험결과들이 보여준다.

깊이정보 기반 Watershed 알고리즘을 이용한 얼굴영역 분할 (Facial Region Segmentation using Watershed Algorithm based on Depth Information)

  • 김장원
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권4호
    • /
    • pp.225-230
    • /
    • 2011
  • 본 논문에서는 깊이정보에 기반한 watershed와 영역병합 알고리즘을 이용한 얼굴영역 분할 방법을 제안하였다. 얼굴영역 검출은 영역 분할 단계, 초기 화소 영역 검출 단계, 영역 병합의 세 단계로 구성된다. 입력된 컬러 영상은 제안된 알고리즘에 의해 균일한 작은 영역들로 분할된다. 색도정보와 에지 구속 조건을 사용하여 균일한 영역들을 결합함으로써 얼굴영역을 검출한다. 제안한 알고리즘은 색도정보나 에지정보만을 사용하는 기존 방법에서의 문제점을 해결하였다. 제안한 알고리즘의 성능을 평가하기 위해 컴퓨터 시뮬레이션을 하였으며 정확한 얼굴 영역을 분할할 수 있었다.