• Title/Summary/Keyword: Depth maps

Search Result 247, Processing Time 0.021 seconds

Depth Map Enhancement and Up-sampling Techniques of 3D Images for the Smart Media (스마트미디어를 위한 입체 영상의 깊이맵 화질 향상 및 업샘플링 기술)

  • Jung, Jae-Il;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • As the smart media becomes more popular, the demand for high-quality 3D images and depth maps is increasing. However, performance of the current technologies to acquire depth maps is not sufficient. The depth maps from stereo matching methods have low accuracy in homogeneous regions. The depth maps from depth cameras are noisy and have low-resolution due to technical limitations. In this paper, we introduce the state-of-the-art algorithms for depth map enhancement and up-sampling from conventional methods using only depth maps to the latest algorithms referring to both depth maps and their corresponding color images. We also present depth map enhancement algorithms for hybrid camera systems in detail.

  • PDF

Resolution-independent Up-sampling for Depth Map Using Fractal Transforms

  • Liu, Meiqin;Zhao, Yao;Lin, Chunyu;Bai, Huihui;Yao, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2730-2747
    • /
    • 2016
  • Due to the limitation of the bandwidth resource and capture resolution of depth cameras, low resolution depth maps should be up-sampled to high resolution so that they can correspond to their texture images. In this paper, a novel depth map up-sampling algorithm is proposed by exploiting the fractal internal self-referential feature. Fractal parameters which are extracted from a depth map, describe the internal self-referential feature of the depth map, do not introduce inherent scale and just retain the relational information of the depth map, i.e., fractal transforms provide a resolution-independent description for depth maps and could up-sample depth maps to an arbitrary high resolution. Then, an enhancement method is also proposed to further improve the performance of the up-sampled depth map. The experimental results demonstrate that better quality of synthesized views is achieved both on objective and subjective performance. Most important of all, arbitrary resolution depth maps can be obtained with the aid of the proposed scheme.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

Human Action Recognition via Depth Maps Body Parts of Action

  • Farooq, Adnan;Farooq, Faisal;Le, Anh Vu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2327-2347
    • /
    • 2018
  • Human actions can be recognized from depth sequences. In the proposed algorithm, we initially construct depth, motion maps (DMM) by projecting each depth frame onto three orthogonal Cartesian planes and add the motion energy for each view. The body part of the action (BPoA) is calculated by using bounding box with an optimal window size based on maximum spatial and temporal changes for each DMM. Furthermore, feature vector is constructed by using BPoA for each human action view. In this paper, we employed an ensemble based learning approach called Rotation Forest to recognize different actions Experimental results show that proposed method has significantly outperforms the state-of-the-art methods on Microsoft Research (MSR) Action 3D and MSR DailyActivity3D dataset.

Multi-Depth Map Fusion Technique from Depth Camera and Multi-View Images (깊이정보 카메라 및 다시점 영상으로부터의 다중깊이맵 융합기법)

  • 엄기문;안충현;이수인;김강연;이관행
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.185-195
    • /
    • 2004
  • This paper presents a multi-depth map fusion method for the 3D scene reconstruction. It fuses depth maps obtained from the stereo matching technique and the depth camera. Traditional stereo matching techniques that estimate disparities between two images often produce inaccurate depth map because of occlusion and homogeneous area. Depth map obtained from the depth camera is globally accurate but noisy and provide a limited depth range. In order to get better depth estimates than these two conventional techniques, we propose a depth map fusion method that fuses the multi-depth maps from stereo matching and the depth camera. We first obtain two depth maps generated from the stereo matching of 3-view images. Moreover, a depth map is obtained from the depth camera for the center-view image. After preprocessing each depth map, we select a depth value for each pixel among them. Simulation results showed a few improvements in some background legions by proposed fusion technique.

Depth Up-Sampling via Pixel-Classifying and Joint Bilateral Filtering

  • Ren, Yannan;Liu, Ju;Yuan, Hui;Xiao, Yifan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3217-3238
    • /
    • 2018
  • In this paper, a depth image up-sampling method is put forward by using pixel classifying and jointed bilateral filtering. By analyzing the edge maps originated from the high-resolution color image and low-resolution depth map respectively, pixels in up-sampled depth maps can be classified into four categories: edge points, edge-neighbor points, texture points and smooth points. First, joint bilateral up-sampling (JBU) method is used to generate an initial up-sampling depth image. Then, for each pixel category, different refinement methods are employed to modify the initial up-sampling depth image. Experimental results show that the proposed algorithm can reduce the blurring artifact with lower bad pixel rate (BPR).

Extraction of Snow Cover Area and Depth Using NOAA/AVHRR Images (NOAA/AVHRR 영상을 이용한 적설분포 및 적설심 추출)

  • Kang, Su-Man;Kwon, Hyung-Joong;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.254-259
    • /
    • 2005
  • The shape of a streamflow hydrograph is very much controlled by the area and depth of snow cover in mountain area. The purpose of this study is to suggest extraction methods for snow cover area and depth using NOAA/AVHRR images in Soyanggang watershed. Snow cover area maps ware derived form channel 1, 3, 4 images of NOAA/AVHRR based on threshold value. In order to extract snow cover depth, snow cover area maps were overlaid daily snow depth data form 7 meteorological observation stations. Snow cover area and depth was mapped for period of Dec. 2002 and Mar. 2003. For evaluating snowmelt changes, depletion curve was created using daily snow cover area in the same period. It is necessary to compare these results with observed data and check the applicability of the suggested method in snowmelt simulation.

  • PDF

Depth Map Coding Using Histogram-Based Segmentation and Depth Range Updating

  • Lin, Chunyu;Zhao, Yao;Xiao, Jimin;Tillo, Tammam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1121-1139
    • /
    • 2015
  • In texture-plus-depth format, depth map compression is an important task. Different from normal texture images, depth maps have less texture information, while contain many homogeneous regions separated by sharp edges. This feature will be employed to form an efficient depth map coding scheme in this paper. Firstly, the histogram of the depth map will be analyzed to find an appropriate threshold that segments the depth map into the foreground and background regions, allowing the edge between these two kinds of regions to be obtained. Secondly, the two regions will be encoded through rate distortion optimization with a shape adaptive wavelet transform, while the edges are lossless encoded with JBIG2. Finally, a depth-updating algorithm based on the threshold and the depth range is applied to enhance the quality of the decoded depth maps. Experimental results demonstrate the effective performance on both the depth map quality and the synthesized view quality.

Generation of ROI Enhanced High-resolution Depth Maps in Hybrid Camera System (복합형 카메라 시스템에서 관심영역이 향상된 고해상도 깊이맵 생성 방법)

  • Kim, Sung-Yeol;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.596-601
    • /
    • 2008
  • In this paper, we propose a new scheme to generate region-of-interest (ROI) enhanced depth maps in the hybrid camera system, which is composed of a low-resolution depth camera and a high-resolution stereoscopic camera. The proposed method creates an ROI depth map for the left image by carrying out a three-dimensional (3-D) warping operation onto the depth information obtained from the depth camera. Then, we generate a background depth map for the left image by applying a stereo matching algorithm onto the left and right images captured by the stereoscopic camera. Finally, we merge the ROI map with the background one to create the final depth map. The proposed method provides higher quality depth information on ROI than the previous methods.

A Study on the 3D Video Generation Technique using Multi-view and Depth Camera (다시점 카메라 및 depth 카메라를 이용한 3 차원 비디오 생성 기술 연구)

  • Um, Gi-Mun;Chang, Eun-Young;Hur, Nam-Ho;Lee, Soo-In
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.549-552
    • /
    • 2005
  • This paper presents a 3D video content generation technique and system that uses the multi-view images and the depth map. The proposed uses 3-view video and depth inputs from the 3-view video camera and depth camera for the 3D video content production. Each camera is calibrated using Tsai's calibration method, and its parameters are used to rectify multi-view images for the multi-view stereo matching. The depth and disparity maps for the center-view are obtained from both the depth camera and the multi-view stereo matching technique. These two maps are fused to obtain more reliable depth map. Obtained depth map is not only used to insert a virtual object to the scene based on the depth key, but is also used to synthesize virtual viewpoint images. Some preliminary test results are given to show the functionality of the proposed technique.

  • PDF