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Abstract 
 

Human actions can be recognized from depth sequences. In the proposed algorithm, we 
initially construct depth, motion maps (DMM) by projecting each depth frame onto three 
orthogonal Cartesian planes and add the motion energy for each view. The body part of the 
action (BPoA) is calculated by using bounding box with an optimal window size based on 
maximum spatial and temporal changes for each DMM. Furthermore, feature vector is 
constructed by using BPoA for each human action view. In this paper, we employed an 
ensemble based learning approach called Rotation Forest to recognize different actions 
Experimental results show that proposed method has significantly outperforms the 
state-of-the-art methods on Microsoft Research (MSR) Action 3D  and MSR DailyActivity3D 
dataset. 
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1. Introduction 

Human action recognition (HAR) has been one of the most active research topics in the area 
of computer vision and machine learning. It has been widely used for the various applications 
including security system, smart home systems, content-based video search, video 
surveillance, and health care [1]. The HAR systems have been used mainly for identifying a 
particular human action among several different actions [2, 3]. Until now, there are few 
intelligent HAR systems with a robust and efficient performance which can recognize each 
class of the human activities [3]. It is due to several factors, which directly affect the 
performance of the HAR systems, can be susceptible to the similarity of the performed actions, 
size, appearance and complexity of human actions [3]. To overcome these issues, researchers 
proposed different methods to improve the overall performance of HAR system using RGB 
sensor [4–6].  

Action sequence generation using traditional RGB image frames is the first step for the 
conventional action recognition systems [4, 5]. That is, in this step, the binary silhouettes and 
spatiotemporal interest point’s vertices are used from the RGB frames to extract the action 
sequences. Here, clutter background, low illumination, camera movement, and flat pixel 
intensity values (i.e., 0 and 1) makes it difficult to extract the human actions and eventually 
cause low recognition rates in the HAR systems [4–6].  

Recently, low price depth sensors such as Microsoft Kinect have been adopted for consumer 
applications [7–10]. The Microsoft Kinect sensor is capable of capturing both depth and RGB 
information. The appealing properties of depth maps are: (i) it is less sensitive to illumination 
changes; (ii) it provides valuable information for the representation of the human body (i.e., 
3D information). The depth images are used to distinguish far and near body parts, which 
provides more accurate information compared to the binary maps from the gray level images 
[6]. Fig. 1 illustrates the comparison of both depth and binary maps for High throw action. 
From the figure, it is notice that depth values are changing with the movement of body parts 
and provides useful information about the 3D actions compared to the conventional binary 
maps.  

 
A method for generating depth motion maps (DMM) has been proposed by Yang et al. [11] 

is based on accumulating a difference between two consecutive depth images. These depth 
images are projected onto the three orthogonal Cartesian planes to distinguish the motion of an 
action. Then, the histogram of oriented gradients (HOG) descriptor [12] is used to extract the 
features from each DMM view for training the support vector machine (SVM) classifier. Chen 
et al. [13] modified the method of Yang et al. [11] by taking an absolute difference between 
two consecutive depth maps without thresholding and then stack the motion variations to form 
a DMM. In [14], DMMs are divided into overlapped blocks, and local binary pattern (LBP)  
[15] is applied to each block to calculate LBP histogram. These LBP histograms were further 
use to make feature vector that belongs to different actions. However, the proposed system in 
[11, 13, 14] fails to perform when there is significant temporal variation which leads to 
difficulties in discriminating the actions. This implies that considering the whole body as a 
feature vector, which may include unnecessary information that belongs to those of body parts 
that are not related to a particular action, may degrade the overall performance of HAR 
systems.   
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Fig. 1.  High throw action from MSR Action3D dataset a) depth map sequence b) binary map sequence 
 

Based on the aforementioned problems, the current work is aiming to improving the 
recognition rate of the HAR system by exploring large spatial and temporal variations. Our 
literature review show that the information from the spatial and temporal variation is not yet 
addressed yet for the recognition of human actions. Therefore, exploring large spatial and 
temporal is the primary focus of this paper. Furthermore, the processing time required to 
identify an action could also be an important aspect when considering the performance of the 
system [16]. The depth maps of the actions have been captured by using the Kinect sensor [7]. 
Moreover, an optimal size of window encapsulated in the moving body parts can be identified 
in the depth maps [17]. That is, the body part of the action (BPoA) is identified by a window, 
where the window is determined to which includes the maximum depth variation from each 
DMM. Here, the DMM is generated by stacking motion energy of all the depth maps onto 
three Cartesian planes (i.e., front view, side view and top view). Each action category has its 
distinct morphology (appearance and shape) which is entirely based on the accumulation of 
spatial and temporal motion variations. The proposed system, which is based upon BPoA, 
contains the salient information belongs to a maximum change in spatial and temporal 
domains. However, body parts of non-action (BPoNA) provides static or slowly varying 
regions in spatial and temporal domains. The difference between the BPoA and BPoNA is 
shown in Fig. 2. In the end, the feature vector was feeds into a non-linear tree based Rotation 
Forest (RF) classifier to classify all the actions. 

 

         a 

b 
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Fig. 2.  DMM of horizontal wave action with BPoA (green line) and BPoNA (red line) 

 

The rest of the paper is structure as follows: section 2, comprises of literature review on 
action recognition using RGB and depth sensors. In section 3, includes an introduction to 
proposed action recognition method, which relies on the BPoA of the DMM. Furthermore, we 
discuss the proposed RF approach for classification of different human actions. The details of 
the experimental procedure and evaluation results are shown in Section 4, and a conclusion is 
given in Section 5. 

2. Related Work 
HAR systems have been focused on using spatial-temporal features, space-time volumes, and 
trajectories from video sequences via traditional RGB sensors. Temporal information is 
obtained by employing global descriptors such as "motion history image" (MHI) and "motion 
energy image" (MEI) to represent action sequences [4]. However, the MHI and MEI 
descriptors heavily rely on the performance of background subtraction. Furthermore, these 
methods are very sensitive to camera movement and dynamic environments, which leads to 
the failure for recognizing the complex actions [18]. Image features can also be extracted 
using spatial and temporal methods. Gaussian kernel and Gabor filter methods have been 
employed to extract features in the spatial and temporal domain in [5]. This method is usually 
based on convolution operation. Thus it is easy to implement. However, the efficiency of these 
methods is reduced in the case of high video resolution, and it is also difficult to extract the 
features such as optical flow and silhouettes [16]. 

A hierarchical structure to model the spatial-temporal context information using SIFT has 
been proposed in [19] to compute trajectories by matching SIFT descriptors between two 
successive frames. Their model consists of point-level context, intra-trajectory context, and 
inter-trajectory context. However, this method is based on finding a fixed-dimensional 
velocity description using the Markov chain velocity model [20], and the method relies on 
large sets of fully labeled training data. Later on, a method based on dividing an entire 
sequence of frames into a bag of features (BoF), which is used to obtain spatial-temporal 
histograms, has been proposed by Laptev et al. [21]. However, the drawback of the 
color-based action recognition systems is that they are very sensitive to brightness changes 
[13]. 

BPoNA (Less spatial 
and temporal change)  
 

BPoA 
(Large spatial and 
temporal change)  
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Several problems related to human pose estimation and the RGB-D sensor has solved 
recognition. This sensor captures the real-time depth maps, which have been used to analyze 
human actions [7-10] and [22–24]. A method calculating the difference between the joints in 
both temporal and spatial domains has been proposed by Yang et al. [8]. Furthermore, 
principal component analysis (PCA) is employed to obtain eigen joints features for action 
recognition system. A system which is based on both the RGB and depth information to 
recognize human actions has been proposed by Sung et al. [9]. In this system, the features 
belonging to body pose, hand position, and motion information are modeled by skeleton joints. 
The HOG features are extracted by calculating region of interest (ROI) in gray images and 
depth maps are used to distinguish their appearances. In [22], skeleton joint information is 
used to model body pose and motion information. Then, motion and geometry cues based on a 
histogram of normal orientation (i.e., 4D depth, time and spatial coordinates) are successfully 
processed to recognize the human activities. An invariant posture representation is used via a 
histogram of 3D joint locations, which has been proposed in [25], where the joint points are 
then transferred to a modified spherical coordinate system to achieve view-invariance. 
However, the applications using body joints are very limited, as the joints information is not 
available and hence not reliable for many real applications [11]. 

In [26], Kamal et al. represented the human skeleton by considering joint information (i.e., 
relative joint positions, temporal movement of joints and offset of the joints) with respect to 
the depth intensity values to evaluate recognition performance. In [27], joints plus body 
features based method is proposed which extract joints information from skin color detection 
and depth pixels values from multi-views body shape. These features were combined to make 
a concatenated feature vector. Furthermore, these features are then trained and recognized 
human activities via self-organized map. A method based on pairwise relative positions of the 
joints has been proposed by Wang et al. [28]. The proposed method characterize the spatial 
relationship of joints. However, these methods completely ignored the temporal information 
which leads to uncertainty in the description of action sequence. More complex skeleton 
representations have been proposed by [29, 30].  The sequence of the skeleton was represented 
as a curve in the Lie group. This is done by defining the relative geometry between two rigid 
body parts as a rigid rotation and translation transformation. 

A global feature based on space-time occupancy patterns (STOP) has been proposed in 
[10], which maintains both spatial and temporal information to recognize different human 
actions using depth map sequences. In [7], bag-of-3D-points are obtained by sampling the 
points from the body surface in each frame of performed action. These methods are evaluated 
on MSR Action3D dataset [7], which shows unsatisfactory results, especially for the 
cross-subject test. Furthermore, sampling the 3D points from a whole body requires a large 
number of the dataset; thereby high computation is needed for training the classes. The DMM 
has been proposed in [11, 13], which reduces the computational complexity and improves the 
results as compare to [7, 8, 25] but their results are still unsatisfactory probably due to large 
intra-class variations. A real-time processing of the DMM is also conducted to calculate the 
processing time of each component of the proposed system for action recognition in [13].  

In this work, we propose a method to recognize the actions based on BPoA features. The 
features are obtained by extracting the body part, which has the maximum depth variation and 
discards the regions, which have a small change in spatial and temporal domains from each 
DMM. The features obtained by the proposed method are then fed into the classifier. To 
evaluate the performance of proposed method, we use publically available MSR-Action3D 
and MSR DailyActivity3D dataset. The results illustrate approximately 5% increases in 
performance compared to the state-of-the-art methods for action recognition system. 
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Furthermore, the processing time of the system using the proposed method is also evaluated 
and compared to existing state-of-the-art methods in the literature. Though the processing time 
of our proposed method is minutely longer, yet the recognition accuracy is 5% more in 
cross-validation experiment than the one in primitive methods. That is why, the proposed 
method is robust and efficient compared to conventional methods, and hence, the BPoA based 
method is a reliable candidate for the better HAR systems. 

3. Methodology 
The proposed HAR system consists of input depth maps from the depth sensor and processes 
them for extracting BPoA features from each DMM. These features are then fed into RF 
classifier to recognize the action. The performance of the proposed approach heavily depends 
on two components, i.e., a robust feature extraction method and a machine learning method 
which can correctly identify the actions. To evaluate the proposed feature extraction method, 
we use Microsoft Research (MSR) Action-3D dataset [7], consisting of a sequence of depth 
maps captured using depth sensor. The feature extraction stage has the following feed-forward 
steps: 

• Calculating the DMMs for the front view, side view and top view, each of which is a 
projected view of an action in 3D depth maps. The reason to use these projected views 
is that DMMs are reliable and capable of providing useful information to improve the 
performance of HAR systems [11].  

• Finding maximum depth variation in each DMM and localizing it in an optimal size 
window for extracting BPoA. 

The feature matrix is then fed into RF classifier to recognize each action. The overall flow 
of our approach is illustrated in Fig. 3, and each step of the block diagram is explained in this 
section. 

 

 
Fig. 3.  Overall flow of the proposed HAR system 
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3.1 Feature Extraction 
One of the critical components of HAR system is the feature extraction. Our feature extraction 
method considers depth variations to extract the features from the body part of the action 
(namely BPoA), which are computed by calculating maximum depth change in each DMM.  
 

a)     Depth motion maps: 
Motion information in the depth video can be treated readily by projecting depth motion 

maps onto the three Cartesian planes to generate three 2D-view images to analyze the motions 
at different views. In particular, 2D projected maps of front view (𝑓𝑓), side view (𝑠𝑠) and top 
view (𝑡𝑡) are generated from depth video  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = �𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞  �𝑞𝑞 = 1,2,3, … ,𝑄𝑄} where Q is the 
total number of depth sequences in a video shot and  𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞  represents the qth frame of the 
depth maps. That is, each 2D view denoted by 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣, where 𝑣𝑣 ∈ {𝑓𝑓, 𝑠𝑠, 𝑡𝑡}, is generated by 
projecting 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞  onto each view 𝑣𝑣. Then, the depth motion map for the view𝑣𝑣, 𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣, is 
obtained by accumulating the absolute differences between two consecutive depth maps for 
each view 𝑣𝑣. So, 𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣 of each projected view is presented as:  

𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣 =  ∑ �𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞

𝑣𝑣
 − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞−1
𝑣𝑣

 
 �𝑄𝑄

𝑞𝑞=2                                                     (1) 

where 𝑞𝑞 is the index of each depth map, and 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞

𝑣𝑣
  is the projected map of 𝑞𝑞th frame 

under the projection view 𝑣𝑣. For example, 𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣 of High wave action are generated from 
depth video sequences and illustrated in Fig. 4.  

 

 
Fig. 4.  𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣 generated from depth sequences of High wave action 

 
The bounding box denoted as BDMM (bounded depth motion maps), which tightly 

encapsulates the area of non-zero motion activities for all {𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣}, is determined by four 
points  {𝐴𝐴,𝐵𝐵,𝐶𝐶, and 𝐷𝐷 } as illustrated in Fig. 5. That is, for each 𝑁𝑁𝑣𝑣 × 𝑀𝑀𝑣𝑣 frame of 𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣 =
{𝐼𝐼(𝑖𝑖, 𝑗𝑗)| 1 ≤  𝑖𝑖 ≤ 𝑁𝑁𝑣𝑣 , 1 ≤  𝑗𝑗 ≤ 𝑀𝑀𝑣𝑣}, we can find a tightest bounding box with four vertices 
(i.e., A, B, C, and D) as in Fig. 5. This can be easily done by discarding the background regions 
with the lines of 𝑆𝑆1,𝑆𝑆2,𝑆𝑆3, and 𝑆𝑆4 in Fig. 5.  
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Fig. 5.  Encapsulation of the non-zero region by a bounding box with four vertices 

 
b) Detecting BPoA in a bounding box:  
The differentiation between the BPoA and the BPoNA can be made by finding calculating 

maximum depth variation in each BDMM. We seek a window of an optimal size iteratively 
with an initial window size of (2𝑤𝑤𝑟𝑟 + 1) × (2𝑤𝑤𝑐𝑐 + 1) centered at 𝐶𝐶 = (𝐶𝐶𝑟𝑟,𝐶𝐶𝑐𝑐)  for each 
BDMM𝑣𝑣 as shown in Fig. 6.  

 

 
Fig. 6.  A window of (2𝑤𝑤𝑟𝑟 + 1) × (2𝑤𝑤𝑐𝑐 + 1) within a bounding box 

 
An alternate optimization process using (2) and (3) can be applied to find the optimal 

window size (𝑤𝑤𝑟𝑟,𝑤𝑤𝑐𝑐) and the center of the window (𝐶𝐶𝑟𝑟,𝐶𝐶𝑐𝑐). However, BDMM𝑣𝑣 may not be 
appropriate to calculate the maximum depth change as it may contain cluttered motions. To 
solve this problem, firstly, a threshold 𝑇𝑇𝑔𝑔  is applied to each pixel in BDMM𝑣𝑣 to find the 
maximum depth change. 
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(𝐶𝐶𝑟𝑟
(𝑛𝑛),𝐶𝐶𝑐𝑐

(𝑛𝑛)) =   𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
1≤𝑖𝑖≤𝑁𝑁𝑟𝑟,1≤𝑗𝑗≤𝑁𝑁𝑐𝑐

�∑ ∑ BDMM𝑣𝑣(𝑖𝑖 + 𝑎𝑎, 𝑗𝑗 + 𝑏𝑏)𝑤𝑤𝑐𝑐
(𝑛𝑛−1)

𝑏𝑏=−𝑤𝑤𝑐𝑐
(𝑛𝑛−1)

𝑤𝑤𝑟𝑟
(𝑛𝑛−1)

𝑎𝑎=−𝑤𝑤𝑟𝑟
(𝑛𝑛−1) �                  (2)      

(𝑤𝑤𝑟𝑟
(𝑛𝑛),𝑤𝑤𝑐𝑐

(𝑛𝑛)) =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚≤𝑤𝑤𝑟𝑟≤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚≤𝑤𝑤𝑐𝑐≤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

�BDMM_B
𝑤𝑤𝑟𝑟,𝑤𝑤𝑐𝑐,𝐶𝐶𝑟𝑟

(𝑛𝑛),𝐶𝐶𝑐𝑐
(𝑛𝑛)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝜒𝜒 (BDMM_B
𝑤𝑤𝑟𝑟,𝑤𝑤𝑐𝑐,𝐶𝐶𝑟𝑟

(𝑛𝑛),𝐶𝐶𝑐𝑐
(𝑛𝑛)

𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ) <  𝑇𝑇𝑙𝑙)�    (3)            

Where 
BDMM_B

𝑤𝑤𝑟𝑟,𝑤𝑤𝑐𝑐,𝐶𝐶𝑟𝑟
(𝑛𝑛),𝐶𝐶𝑐𝑐

(𝑛𝑛)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  ∑ ∑ 𝜒𝜒(BDMM𝑣𝑣 �(𝐶𝐶𝑟𝑟

(𝑛𝑛) + 𝑎𝑎, (𝐶𝐶𝑐𝑐
(𝑛𝑛) + 𝑏𝑏)) > 𝑇𝑇𝑔𝑔�

𝑤𝑤𝑐𝑐
𝑏𝑏=−𝑤𝑤𝑐𝑐

𝑤𝑤𝑟𝑟
𝑎𝑎=−𝑤𝑤𝑟𝑟

        (4)                        

BDMM_B
𝑤𝑤𝑟𝑟,𝑤𝑤𝑐𝑐,𝐶𝐶𝑟𝑟

(𝑛𝑛),𝐶𝐶𝑐𝑐
(𝑛𝑛)

𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  ∑ ∑ 𝜒𝜒(BDMM𝑣𝑣 �(𝐶𝐶𝑟𝑟
(𝑛𝑛) + 𝑎𝑎, (𝐶𝐶𝑐𝑐

(𝑛𝑛) + 𝑏𝑏)) < 𝑇𝑇𝑔𝑔�
𝑤𝑤𝑐𝑐
𝑏𝑏=−𝑤𝑤𝑐𝑐

𝑤𝑤𝑟𝑟
𝑎𝑎=−𝑤𝑤𝑟𝑟

        (5)       
              

𝜒𝜒(𝜑𝜑) = �1, 𝑖𝑖𝑖𝑖 𝜑𝜑 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
0,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 �. 

 
where  𝑇𝑇𝑙𝑙  and 𝑇𝑇𝑔𝑔 are the pre-determined thresholds to define maximum number of gradient 

pixels in the estimated optimal windows and the gradient magnitude, respectively.  The 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and maximum window sizes.  𝑛𝑛 is the iteration number and 
𝑁𝑁𝑟𝑟 × 𝑁𝑁𝑐𝑐 is the size of the BDMM. That is, for the current window size (𝑤𝑤𝑟𝑟

(𝑛𝑛−1),𝑤𝑤𝑐𝑐
(𝑛𝑛−1)), we 

find the center of the widow (𝐶𝐶𝑟𝑟
(𝑛𝑛),𝐶𝐶𝑐𝑐

(𝑛𝑛)) using  (2). Then, based on the updated center point, 
the maximum depth changes within the window are examined for all the possible window 
sizes using  (3) to update the window to (𝑤𝑤𝑟𝑟

(𝑛𝑛),𝑤𝑤𝑐𝑐
(𝑛𝑛)). Algorithm 1 provides the summary to 

determine a window size and BPoA location.  
 

Algorithm 1: Determination of the window size and its center to encapsulate BPoA. 
Input: Initial window size (𝑤𝑤𝑟𝑟

(0),𝑤𝑤𝑐𝑐
(0)) 

while ((𝑤𝑤𝑟𝑟
(𝑛𝑛−1),𝑤𝑤𝑐𝑐

(𝑛𝑛−1)) ≠(𝑤𝑤𝑟𝑟
(𝑛𝑛),𝑤𝑤𝑐𝑐

(𝑛𝑛))) 
           Calculate (𝐶𝐶𝑟𝑟

(𝑛𝑛),𝐶𝐶𝑐𝑐
(𝑛𝑛)) using  (4) 

           Update (𝑤𝑤𝑟𝑟
(𝑛𝑛),𝑤𝑤𝑐𝑐

(𝑛𝑛)) according to  (5)   (increase n by 1) 
end 
Output (𝐶𝐶𝑟𝑟 ,𝐶𝐶𝑐𝑐 ) (𝑤𝑤𝑟𝑟 ,𝑤𝑤𝑐𝑐 ) 

 
The red windows shown in Fig. 7 are the successfully detected BPoA𝑣𝑣  using the 2D 

projected maps of the High throw action. Where BPoA𝑓𝑓 shows the maximum depth variation 
in the front view and maximum depth change in the side and top view is illustrates in 
BPoA𝑠𝑠 and BPoA𝑡𝑡 respectively. The features extracted from BPoA are expected to improve 
the overall performance of HAR system compared to the features extracted from the whole 
human body used in [11, 13, 14]. In order to reduce large intra-class variability the size of each 
BPoA𝑣𝑣 is kept fixed to the mean value of all BPoA𝑣𝑣 under the same projection view [31]. In 
order to generate the features of an action sequence we arrange BPoA matrix (i.e. (2𝑤𝑤𝑟𝑟𝑣𝑣 +
1) × (2𝑤𝑤𝑐𝑐𝑣𝑣 + 1)) to a single column vector (i.e. 1 ×  (2𝑤𝑤𝑟𝑟𝑣𝑣 + 1)(2𝑤𝑤𝑐𝑐𝑣𝑣 + 1)) in raster-scan 
order for each view, BPoA𝑓𝑓 ∈ �𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑛𝑛𝑓𝑓� ; BPoA𝑠𝑠 ∈ �𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛𝑠𝑠�; BPoA𝑡𝑡 ∈

�𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛𝑡𝑡�where the size of 𝑛𝑛𝑓𝑓 is �2𝑤𝑤𝑟𝑟
𝑓𝑓

 + 1) × (2𝑤𝑤𝑐𝑐
𝑓𝑓 + 1�, 𝑛𝑛𝑠𝑠 is �2𝑤𝑤𝑟𝑟𝑠𝑠  + 1) × (2𝑤𝑤𝑐𝑐𝑠𝑠 +

1� and 𝑛𝑛𝑡𝑡  is �2𝑤𝑤𝑟𝑟𝑡𝑡  + 1) × (2𝑤𝑤𝑐𝑐𝑡𝑡 + 1�. 
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                Front view      Side view      Top view 

                             𝐹𝐹1 = � 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑛𝑛𝑓𝑓   , 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛𝑠𝑠   , 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛𝑡𝑡  �
Τ
                                 (6) 

 
In (6) each view is concatenated to make a single feature vector 𝐹𝐹1 for a certain action 

sequence and here Τ shows the matrix transpose. The size of feature vector 𝐹𝐹1 is (𝑛𝑛𝑓𝑓 + 𝑛𝑛𝑠𝑠 +
𝑛𝑛𝑡𝑡) × 1. Hence, the final feature matrix 𝐹𝐹 comprises of feature vectors from all the action 
sequences. Each feature vector is arranged 
column-wise  𝐹𝐹 = � 𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑝𝑝 � ∈ ℝ(𝑛𝑛𝑓𝑓+𝑛𝑛𝑠𝑠+𝑛𝑛𝑡𝑡) ×𝑝𝑝 , where 𝑝𝑝 is the total number of action 
sequences in a dataset. 

 

 
Fig. 7.  Determined optimal windows from each view (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠  and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡) 

3.2 Rotation Forest 
The classification performance of HAR systems is also important. Note the accuracy of the 
action classification is to be improved by considering the conventional algorithms together. To 
achieve high classification accuracy, a group of classifiers (GoC) has been used such as 
Rotation Forest (RF) [32] instead of a single classifier. An efficient GoC system mainly 
consists of accurate and diverse base classifiers. Thus, a sample, which is misclassified by one 
base classifier, will be corrected by other ones and the final classification after all the GoC is 
more accurate than the individual best classifier [33].  

The RF approach has been proposed by Rodriguez et al. [34], and the concept of RF is to 
encourage both diversity and individual accuracy simultaneously within the GoC. In the RF, 
each classifier is independently constructed and trained on the training samples in a rotated 
feature space, which is derived from the PCA transformation. The RF performs much better 
than previous ensemble methods [33, 34]. In particular, RF is a newly proposed 
multi-classifier scheme, and the overall flow of the algorithm is described as follows: 

For each base classifier, training dataset 𝐹𝐹𝑇𝑇 is randomly split into 𝐾𝐾 subsets. Consider 𝐹𝐹𝑇𝑇 
be the input training samples of size �(𝑛𝑛𝑓𝑓 + 𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑡𝑡) × 𝑝𝑝𝑇𝑇� matrix, where 𝑝𝑝𝑇𝑇 is the total 
number of training samples from all the action sequences. 𝑌𝑌𝑇𝑇 be the corresponding labels with 
dimensionality (𝑝𝑝𝑇𝑇 × 1) is defined as the class labels {1, … , 𝑙𝑙}, where 𝑙𝑙 is the total number of 
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classes. We split 𝐹𝐹𝑇𝑇 into 𝐾𝐾 disjoint subsets randomly, by assuming that each feature subset 
contains 𝑀𝑀 =  𝑝𝑝𝑇𝑇/𝐾𝐾  features. The steps for training the base classifiers  𝐸𝐸𝑖𝑖 , where  𝑖𝑖 =
 1, . . . ,𝑄𝑄 and 𝑄𝑄 is the number of base classifiers, are explained in the following [33]. 

• Split  𝐹𝐹𝑇𝑇 into  𝐾𝐾 disjoint subsets randomly, by assuming that each feature subset 
contains 𝑀𝑀 =  𝑝𝑝𝑇𝑇/𝐾𝐾 features. 

• Let 𝐹𝐹𝑇𝑇𝑖𝑖,𝑗𝑗 be the 𝑗𝑗𝑡𝑡ℎ, 𝑗𝑗 =  1, … ,𝐾𝐾, subset of features for the base classifier 𝐸𝐸𝑖𝑖. Also, let 
𝐹𝐹𝑇𝑇𝑖𝑖,𝑗𝑗

′  be a new training dataset, which is selected from 𝐹𝐹𝑇𝑇𝑖𝑖,𝑗𝑗 with the 75% size using 
bootstrap algorithm. Then, a linear transformation is applied as the PCA on 𝐹𝐹𝑇𝑇𝑖𝑖,𝑗𝑗

′  to get 

the coefficients 𝑢𝑢𝑖𝑖,𝑗𝑗
(1), … . . ,𝑢𝑢𝑖𝑖,𝑗𝑗

(𝑀𝑀𝑗𝑗)  , the size of each principal component 𝑢𝑢𝑖𝑖,𝑗𝑗 is 𝑀𝑀 × 1.  
• Construct a sparse rotation matrix 𝑅𝑅𝑖𝑖 with the obtained coefficients as follow (7):  

• 𝑅𝑅𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡𝑢𝑢𝑖𝑖,1

(1),𝑢𝑢𝑖𝑖,1
(2) … . . ,𝑢𝑢𝑖𝑖,1

(𝑀𝑀1)       [0]1×𝑀𝑀2                  …                 [0]1×𝑀𝑀𝐾𝐾

[0]1×𝑀𝑀1  𝑢𝑢𝑖𝑖,2
(1),𝑢𝑢𝑖𝑖,2

(2) … . . ,𝑢𝑢𝑖𝑖,2
(𝑀𝑀2)      …                  [0]1×𝑀𝑀𝐾𝐾      

                                                                            
      ⋮                                    ⋮                           ⋱                     ⋮    

            [0]1×𝑀𝑀1                            [0]1×𝑀𝑀2               …  𝑢𝑢𝑖𝑖,𝐾𝐾
(1),𝑢𝑢𝑖𝑖,𝐾𝐾

(2) … . . ,𝑢𝑢𝑖𝑖,𝐾𝐾
(𝑀𝑀𝐾𝐾)

⎦
⎥
⎥
⎥
⎥
⎤

  (7)                   

• The columns of 𝑅𝑅𝑖𝑖  is rearranged with respect to the original feature set to obtain 
rotation matrix 𝑅𝑅𝑖𝑖𝑢𝑢. Then, the training set will become 𝐹𝐹𝑇𝑇𝑅𝑅𝑖𝑖𝑢𝑢. In this case, all classifiers 
are train in parallel. For a given test sample 𝒳𝒳 , let 𝑑𝑑𝑛𝑛,𝑚𝑚(𝒳𝒳𝑅𝑅𝑖𝑖𝑢𝑢) is the probability 
generated by the classifier 𝐸𝐸𝑖𝑖 to the hypothesis that 𝒳𝒳 belongs to class 𝑐𝑐 the confidence 
is calculated for each class by the average combination method as (8):  

𝜇𝜇𝑗𝑗(𝒳𝒳) = ∑ 𝑑𝑑𝑖𝑖,𝑗𝑗(𝒳𝒳𝑅𝑅𝑖𝑖𝑢𝑢)𝑄𝑄
𝑖𝑖=1  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 = 1, … , 𝑙𝑙                                  (8) 

Finally, 𝒳𝒳 will be assigned to the class with the largest confidence. The success of RF 
relies on the base classifier and the rotation matrix created by the transformation methods. 
Here, we selected k-nearest neighbour as the base classifier [35]. In [36], the authors compare 
the performance of different transformation algorithms (e.g., PCA, NDA, and RP) and found 
that PCA produced the best results. For more details about RF classifier reader may refer to 
[34]. 

4. Experimental result 

4.1 Experimental setup 
In this study, we evaluate our feature extraction method using MSR Action-3D dataset [21] 

and MSR DailyActivity3D dataset [28].  
The MSR Action-3D dataset is publically available and comprises of depth sequences, 

which are captured using depth sensor. The dataset has been recorded on ten volunteer 
subjects facing towards the camera for 20 different actions. During the recordings, each action 
was repeated 2-three times for each subject, thus, having significant intra-class variation. The 
size of each depth map is 320x240. To compare the proposed method with conventional ones 
[7, 8, 10, 11, 13, 14, 25] we follow the same experimental protocols as [7, 18, 22] by  dividing 
the 20 action types into 3 action subsets (i.e., AS1, AS2, and AS3) as shown in Table 1. Based 
on these subsets, three different kinds of tests (i.e., Test I, Test II, and Test III) are considered 
to analyse the overall performance using the proposed method. In Test I, 1/3 of the samples in 
each action is used for training while the rest are used for testing. In Test II, 2/3 of the samples 
in each action is used for training, and the rest are used for testing. In Test III (i.e., cross 
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subject test), 1/2 of the subjects in each action are used for training whereas the remaining 1/2 
subjects are used for testing. In Test I and Test II, actions performed by each subject in test 
data are seen in training data whereas in Test III actions performed by each subject in test data 
is not observed in training data. Moreover, using these three tests we perform under three 
experiments entitled as fixed test experiment (FTE), random test experiment (RTE) and 
cross-validation experiment. Furthermore, to test the recognition rate of proposed method with 
on 20 actions of MSR-Action3D dataset with [28-30], the protocol [28] is used.  

Another hand, the publically available MSRDailyActivity3D dataset contains sixteen 
activities. All subjects performed an activity into two different poses (i.e., stand pose and 
sitting on sofa pose). The MSR DailyActivity3D dataset is one of the challenging dataset in 
which it is very difficult to clear the background objects. 
 

 
Table 1. Three subsets of actions in MSR-Action3D dataset 

Action Set 1 (AS1) Action Set 2 (AS2) Action Set 3 (AS3) 

Horizontal wave (HW) High wave (HW) High throw (HT) 

Hammer (HAM) Hand catch (HC) Forward kick (FK) 

Forward punch (FP) Draw X (DX) Sidekick (SK) 

High throw (HT) Draw tick (DT) Jogging (JNG) 

Hand clap (HC) Draw circle (DC) Tennis swing (TSN) 

Bend (BND) Two hand wave (THW) Tennis serve (TS) 

Tennis serve (TS) Forward kick (FK) Golf swing (GS) 

Pickup throw (PT) Side Boxing (SB) Pickup throw (PT) 
 

4.2 The sensitivity of parameters 
A number of classifiers (𝑄𝑄) and feature sets (𝐾𝐾) are important parameters for the RF. Various 
studies show the reliability of the value of 𝐾𝐾 [37–39]. In [39], the value of 𝐾𝐾 has been set to 2 
when 𝐹𝐹 has less than 10 attributes and for more than 10 attributes they set 𝐾𝐾 =3. Several 
experiments has been conducted by Xia et al. [38] and the best results obtained by 
using 𝐾𝐾 =12. Furthermore, he concludes that for 𝐾𝐾 >10 the accuracy of the overall system 
slightly varies. For example; for  𝐾𝐾 = 50 discussed in Kotsiantis et al. [39], where the author 
suggested that the value of 𝐾𝐾 should be chosen based on of cost minimization criteria. Hence, 
there is no standard set to choose the value of 𝐾𝐾. In this paper, we have best possible results for 
all the experiments for K= 40. In addition, there is no literature review present to select the 
value of 𝑄𝑄. Some of the previous works, have been using fixed number a of group of classifiers 
while some for variable size of  𝑄𝑄  [40]. Rodrguez et al. [34] have used the fixed value 
of 𝑄𝑄 =10. In [36], author claims that RF shows good classification ranging from 1 to 10 on 
average. However, Xia et al. [38] have suggested few numbers of base classifiers for the best 
performance of RF. In [41], they did experiment using different values of 𝑄𝑄 ranging from 5 to 
100, where best accuracies have been achieved from 𝑄𝑄 =10 to 50. However, they also chose 
fixed value of 𝑄𝑄 for whole dataset. For our all experiments we used the fixed number of 
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classifier 𝑄𝑄 = 3 for classification of all the actions. Furthermore, we used k=3 for k-NN base 
classifiers.        
For this study, after several experiments the best results have been obtained for extracting a 
complete BpoA using there parameters such as :𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 8, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 = 55, 𝑇𝑇𝑙𝑙 = 𝑤𝑤𝑑𝑑𝑣𝑣(2𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 +
1)(2𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 + 1), 𝑤𝑤𝑑𝑑

𝑓𝑓 = 0.75,𝑤𝑤𝑑𝑑𝑠𝑠 = 1.25,𝑤𝑤𝑑𝑑𝑡𝑡 = 0.25,𝑇𝑇𝑔𝑔 = 0.06. It is noticed that these 
parameters are very sensitive for detecting optimal window size. For our experiments, the 
pixel values are normalized between 0 and 1 for each BPoA𝑣𝑣.  

4.3 Results and Discussion 
For three subsets setting of MSR Action-3D dataset, the recognition accuracies of the 
proposed HAR system was compared with the accuracies of the conventional methods which 
are obtained from [7, 8, 10, 11, 13, 14, 25]. Table 2 illustrates the comparison of proposed 
method with conventional methods using FTE. It is observed that performance of the proposed 
method for all tests in FTE is significantly better than conventional methods because BPoA 
considers only the maximum depth change while excludes the small variations in each action 
performed by the subjects. 
 

Table 2. Performance Comparison of FTE for MSR-Action3D dataset 
 

 Li et al. 
[7] 

Yang et 
al.[8] 

Vieira 
et 

al.[10] 

Yang et 
al.[11] 

Chen et 
al.[13] 

Chen et 
al.[14] 

Lu et 
al. [25] 

Our 
method 

Test I         
AS1 89.5 94.7 98.2 97.3 97.3 96.7 98.5 99.2 
AS2 89 95.4 94.8 92.2 96.1 100 96.7 100 
AS3 96.3 97.3 97.4 98 98.7 99.3 96.5 100 

Average 91.6 95.8 96.8 95.8 97.4 98.7 96.2 99.7 
Test II                 

AS1 93.4 97.3 99.1 98.7 98.6 100 98.6 99.3 
AS2 92.9 98.7 97 94.7 98.7 100 97.2 99.1 
AS3 96.3 97.3 98.7 98.7 100 100 94.9 100 

Average 94.2 97.8 98.3 97.4 99.1 100 97.2 99.4 
Test III                 

AS1 72.9 74.5 84.7 96.2 96.2 98.1 88 98.2 
AS2 71.9 76.1 81.3 84.1 83.2 92 85.5 94.6 
AS3 79.2 96.4 88.4 94.6 92 94.6 63.6 96.8 

Average 74.7 82.3 84.8 91.6 90.5 94.9 79 96.5 
 

Table 3 shows that the recognition rates of our proposed BPoA based feature extraction 
approach are much higher for all the tests as compare to the conventional DMM based feature 
extraction method [13] for RTE experiment. Confusion matrix of RTE for Test III is shown in 
Fig. 8, which illustrates that the recognition rates are improved as compared to a previous 
method [13].  
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Table 3. Performance Comparison of Random Test for MSR-Action3D dataset 
 

 Chen et al. 
[13] Our method 

Test I 
AS1 

 
97.4 

 
99.1 

AS2 96.1 98.4 

AS3 97.7 98.5 

Average 97.1 98.6 

Test II   

AS1 98.5 99.2 

AS2 97.8 98.6 

AS3 98.9 99.7 

Average 98.4 99.1 

            Test III  
  

AS1 84.8 92.7 

AS2 67.8 82.2 

AS3 87.1 88.7 
Average 79.9 87.8 

 
 

Table 4 provides experiment results of DMM features with RF classifier to verify the 
performance improvement of this classifier. The results illustrated in Table 4 (only RF) and 
Table 3 (new feature BPoA and RF) show that robust feature representation of an action has 
an equal importance with selecting a suitable classifier. BPoA covers the most important 
features of each action that further supported by the RF classifier. 

 
 

Table 4.  Performance Comparison of Random Test for MSR-Action3D dataset 
 

 Chen et al. 
[13] 

Chen et al. [13] 
using RF classifier Our method 

Test I 
AS1 

 
97.4 

 
98.1 

 
99.1 

AS2 96.1 96.9 98.4 

AS3 97.7 98.2 98.5 

Average 97.1 97.73 98.6 
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Test II    

AS1 98.5 98.7 99.2 

AS2 97.8 98.3 98.6 

AS3 98.9 99.3 99.7 

Average 98.4 98.76 99.1 

            Test III  
 

  

AS1 84.8 85.3 92.7 

AS2 67.8 68.5 82.2 

AS3 87.1 87.9 88.7 
Average 79.9 80.6 87.8 

 
We further conducted cross-validation experiments to show that our method does not 

depend on any specific training data. By considering all the 252 combinations, we choose 5 
out of 10 subjects for training and remaining subjects for testing.  As a result, Table 5 shows 
that our method achieves an accuracy of 93.1 %, which is higher than the previous methods. 

 
Table 5. The performance of our method on MSR Hand Action 3D dataset, compared to previous 

methods using cross-validation 
Method Mean accuracy % ± STD 

HON4D [22] 82.2 ± 4.2 
Rahmani et al. [23] 82.7 ± 3.3 

Tran et al.[24] 84.5 ± 3.8 
Chen et al.[14] 87.9 ± 2.9 

Our proposed method 93.1 ± 2.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
 

 HTW HAM FP HT HNC BND TS PT 

HTW 100 0 0 0 0 0 0 0 

HAM 0 85.6 14.4 0 0 0 0 0 

FP 0 3.2 84.3 5.7 0 0 6.8 0 

HT 0 0 0 100 0 0 0 0 

HNC 0 0 0 0 100 0 0 0 

BND 0 0 0 0 0 100 0 0 

TS 0 0 0 0 6.1 0 86.3 7.6 

PT 0 9.5 0 0 0 0 5.3 85.2 
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(b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

Fig. 8.  Confusion matrix for RTE  a) AS1.  b)AS2. c) AS3 
HW= High wave, HTW= Horizontal wave, HAM= Hammer, HC= Hand catch, FP= Forward punch, 
HT= High throw, DX= Draw X, DT= Draw tick, DC= Draw circle, HNC= Hand clap, THW= Two 

hand wave, SB= Side boxing, BND= Bend, FK= Forward kick, SK= Sidekick, JNG= Jogging, TNS= 
Tennis swing, TS= Tennis serve, GS= Golf swing, PT= Pickup throw. 

 
 

Fig. 9 and Table 6 show the confusion matrix and performance comparison, respectively.  
Similar with three subsets setting of more challenging setting, which employed 20 actions of 
MSRActions3D, results show that the proposed human action recognition architecture 
outperformed several well-known methods. 

 

 HW HC DX DT DC THW FK SB 

HW 93.2 0 0 0 6.8 0 0 0 

HC 7.5 71.1 11.5 9.9 0 0 0 0 

DX 0 5.6 70.4 8.6 8.7 6.7 0 0 

DT 0 13.2 7.2 66.9 12.7 0 0 0 

DC 0 0 13.4 11.5 75.1 0 0 0 

THW 8.5 10.8 0 0 0 80.7 0 0 

FK 0 0 0 0 0 0 100 0 

SB 0 0 0 0 0 0 0 100 

 HT FK SK JNG TSN TS GS PT 

HT 90.6 0 0 0 0 0 0 9.4 

FK 0 91.2 8.8 0 0 0 0 0 

SK 0 0 100 0 0 0 0 0 

JNG 0 0 0 100 0 0 0 0 

TSN 0 0 0 0 83.3 16.7 0 0 

TS 0 0 0 0 12.5 78.2 0 9.3 

GS 0 0 0 0 16.6 0 83.4 0 

PT 4.9 0 0 0 6.3 5.9 0 82.9 
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Fig. 9.  Confusion matrix using the protocols [37] for MSR-Action3D dataset 

 
 

Table 6. Performance Comparison of protocols [28] for MSR-Action3D dataset 
 

Method Recognition rate % 
Actionlets [28] 88.20  

Points in a lie group [29] 89.48 
LM3 TL [30] 90.53 

Our proposed method 93.84 
 

The accuracy evaluation of the proposed method using MSRDailyActivity3D dataset [28] 
is compared with only joints position features [28], moving pose features [42] which worked 
on body pose information as well as differential quantities of the human body joints and 
HON4D [22]. Table 7 shows that recognition rates of our proposesd method compared to 
conventional methods . The results suggest that proposed method has significantly 
outperformed the conventional methods. However, it is also noticed that recognition rate of 
HON4D is slight higher than the proposed method. This is because the proposed BPoA 
method does not perform well with the activities where there is the interaction of human 
activity with different things such as read book, write on paper, and play guitar in which it is 
very difficult to clear the background objects.  
 

Table 7. Accuracy evaluation of proposed and conventional methods using MSRDailyActivity3D 
dataset 

Method Recognition rate % 
Only Joints position features [28] 68 ± 5% 

Moving pose [42] 73.8 ± 2% 
Our proposed method 76.3 ± 3% 

HON4D[22] 80 ± 2% 
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In spite of  these limitations, the overall performance of our proposed method shows that 

BPoA produces more prominent features as compared to state-of-the-art methods 

     5. Conclusion 
In this paper, we present a computationally efficient BPoA based feature extraction method for 
action recognition system using RF classifier. An optimal size window encapsulates BPOA 
from each DMM and discards the remaining regions (i.e., BPoNA). Experimental results on 
MSR Action 3D dataset demonstrates that the performance of proposed HAR system achieves 
the mean recognition rate of 98% for Fixed Test, 88% for Random Test, and 93.1% with 
cross-validation experiment, which outperform the existing state-of-the-art methods. 
Furthermore, we observe that generating feature vector using BPoA is more compact and 
separable as compare to the feature extraction methods in previous systems. The processing 
time of the proposed HAR system is slightly longer, but the performance increases to 5% as 
compared to the existing systems. Thus, it is possible to use the proposed system for many 
real-time applications including healthcare systems, automatic video surveillance, and smart 
homes.   

References 
[1] O. Masoud, N.Papanikolopoulos,  "A method for human action recognition," Image Vis. Comput., 

vol. 12, no. 8, pp. 729–743, 2003. Article (CrossRef Link)  
[2]  Z. Gao, J.-M. Song, H. Zhang, A.-A.Liu, Y.-B.Xue, G.-P. Xu, "Human action recognition  via 

Mmulti-modality Information," J. Electr. Eng. Technol., vol 9 no. 2, pp. 739–748, 2014.       
Article (CrossRef Link)  

[3] M. Ye, Q. Zhang, L. Wang, J. Zhu, R. Yang, J. Gall, "A Survey on human motion analysis from 
depth data," in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and 
Applications’(Springer Berlin Heidelberg), pp. 149–187, 2013. Article (CrossRef Link) 

[4] J.W. Davis, A.F.Bobick,  "The representation and recognition of human movement using 
temporal templates," in Proc. of Proceedings of IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, pp. 928–934, 1997.Article (CrossRef Link) 

[5] P. Dollar, V. Rabaud, G. Cottrell, S. Belongie, "Behavior recognition via sparse spatio-temporal 
features," in  Proc. of IEEE International Workshop on Visual Surveillance and Performance 
Evaluation of Tracking and Surveillance, pp. 65–72, 2005. Article (CrossRef Link) 

[6] R. Gupta, A. Y.-S. Chia, R. Rajan, "Human activities recognition using depth images,"  in 
Proceedings of the 21st ACM International Conference on Multimedia’ , pp. 283–292, 2013. 
Article (CrossRef Link) 

[7] W. Li,  Z. Zhang, Z. Liu "Action recognition based on a bag of 3D points,"  in Proc. of  IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 9–
14, 2010. Article (CrossRef Link) 

[8] X. Yang, Y.L. Tian,  "EigenJoints-based action recognition using Na 
#x00EF;ve-Bayes-Nearest-Neighbor," in Proc. of  IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition Workshops, pp. 14–19, 2012. Article (CrossRef Link) 

[9] J. Sung, C. Ponce, B. Selman, A. Saxena, "Unstructured human activity detection from RGBD 
image,"  in  Proc. of IEEE International Conference on Robotics and Automation, pp. 842–849, 
2012. Article (CrossRef Link) 

[10] A. W. Vieira, E.R. Nascimento, G.L. Oliveira, Z. Liu, M.F.M. Campos, "STOP: Space-Time 
Occupancy Patterns for 3D Action Recognition from Depth Map Sequences," in Proc. of  
Iberoamerican Congress on Pattern Recognition Springer Berlin Heidelberg, pp. 252–259, 2012. 
Article (CrossRef Link) 

http://dx.doi.org/doi:10.1016/S0262-8856(03)00068-4
http://dx.doi.org/doi:10.5370/JEET.2014.9.2.739
https://doi.org/10.1007/978-3-642-44964-2_8
http://dx.doi.org/doi:10.1109/CVPR.1997.609439
http://dx.doi.org/doi:10.1109/VSPETS.2005.1570899
http://dx.doi.org/doi:10.1145/2502081.2502099
http://dx.doi.org/doi:10.1109/cvprw.2010.5543273
http://dx.doi.org/doi:10.1109/cvprw.2012.6239232
http://dx.doi.org/doi:10.1109/ICRA.2012.6224591
http://dx.doi.org/doi:10.1007/978-3-642-33275-3_31


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018                                   2345 

[11] X. Yang, C. Zhang, Y. Tian, "Recognizing actions using depth Motion maps-based histograms of 
oriented gradients," in Proc. of ‘Proceedings of the 20th ACM International Conference on 
Multimedi, pp. 1057–1060, 2012. Article (CrossRef Link) 

[12] N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection," in Proc. of IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 
886–893, 2005. Article (CrossRef Link) 

[13] C. Chen, K. Liu, N. Kehtarnavaz, "Real-time human action recognition based on depth motion 
maps," J. Real-Time Image Process., vol 12, no. 1, pp. 155–163, 2016. Article (CrossRef Link) 

[14] C. Chen, R. Jafari, N. Kehtarnavaz, "Action recognition from depth sequences using depth motion 
maps-based local binary patterns," in Proc. of IEEE Winter Conference on Applications of 
Computer Vision, pp. 1092–1099, 2015. Article (CrossRef Link) 

[15] T. Ojala, M. Pietikainen, T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture 
classification with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, 
pp. 971–987, 2002. Article (CrossRef Link) 

[16] P. Turaga, R. Chellappa, V.S. Subrahmanian, O. Udrea, "Machine recognition of human activities 
a survey," IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 11, pp. 1473–1488, 2008. 
Article (CrossRef Link) 

[17] A.V. Le, S.-W. Jung, C.S. Won, "Nonuniform video size reduction for moving objects," Sci. 
World J., p. e832871, 2014. Article (CrossRef Link) 

[18] J.C. Niebles, H. Wang, L. Fei-Fei, "Unsupervised learning of human action categories using 
spatial-temporal words," Int. J. Comput. Vis, vo. 79, no. 3, pp. 299–318, 2008.                           
Article (CrossRef Link) 

[19] J. Sun, X. Wu, S. Yan, L.F. Cheong, T.S. Chua, J. Li, "Hierarchical spatio-temporal context 
modeling for action recognition," in  Proc. of IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 2004–2011,2009. Article (CrossRef Link) 

[20] M. Raptis, S. Soatto, "Tracklet descriptors for action modeling and video analysis," in Proc. of  
European Conference on Computer Vision, (Springer Berlin Heidelber), pp. 577–590, 2010. 
Article (CrossRef Link) 

[21] I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, "Learning realistic human actions from 
movies,", in Proc. of IEEE Conference on Computer Vision and Pattern Recognition,  pp. 1–8, 
2008. Article (CrossRef Link) 

[22] O. Oreifej, Z. Liu, "HON4D: Histogram of oriented 4D normals for activity recognition from 
depth sequences,"  in Proc. of Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 716–723, 2013. Article (CrossRef Link) 

[23] H. Rahmani, A. Mahmood, A, D. Q. Huynh, A. Mian, "Real time action recognition using 
histograms of depth gradients and random decision forests," in  Proc. of IEEE Winter Conference 
on Applications of Computer Vision, pp. 626–633, 2014. Article (CrossRef Link) 

[24] Q.D. Tran, N.Q. Ly, "Sparse spatio-temporal representation of joint shape-motion cues for human 
action recognition in depth sequences," in Proc. of ‘The 2013 RIVF International Conference on 
Computing Communication Technologies - Research, Innovation, and Vision for Future (RIVF), 
pp. 253–258, 2013. Article (CrossRef Link) 

[25] L. Xia, C.C. Chen, J.K. Aggarwal, "View invariant human action recognition using histograms of 
3D joints, " in Proc. of  ‘2 IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition Workshops, pp. 20–27, 2012. Article (CrossRef Link) 

[26] Kamal, Shaharyar, Ahmad Jalal, and Daijin Kim. "Depth images-based human detection, tracking 
and activity recognition using spatiotemporal features and modified HMM," J. Electr. Eng. 
Technol, vol. 11, pp. 1857-1862, 2016. Article (CrossRef Link) 

[27] Jalal, Ahmad, Yeonho Kim, Shaharyar Kamal, Adnan Farooq, and Daijin Kim. "Human daily 
activity recognition with joints plus body features representation using Kinect sensor," in Proc. of  
Informatics, Electronics & Vision (ICIEV), 2015 International Conference on, pp. 1-6, 2015. 
Article (CrossRef Link) 

 
 

http://dx.doi.org/doi:10.1145/2393347.2396382
http://dx.doi.org/doi:10.1109/cvpr.2005.177
http://dx.doi.org/doi:10.1007/s11554-013-0370-1
http://dx.doi.org/doi:10.1109/wacv.2015.150
http://dx.doi.org/doi:10.1109/TPAMI.2002.1017623
http://dx.doi.org/doi:10.1109/TCSVT.2008.2005594
http://dx.doi.org/doi:10.1155/2014/832871
http://dx.doi.org/doi:10.1007/s11263-007-0122-4
http://dx.doi.org/doi:10.1109/CVPR.2009.5206721
http://dx.doi.org/doi:10.1007/978-3-642-15549-9_42
http://dx.doi.org/doi:10.1109/cvpr.2008.4587756
http://dx.doi.org/doi:10.1109/cvpr.2013.98
http://dx.doi.org/doi:10.1109/WACV.2014.6836044
http://dx.doi.org/doi:10.1109/rivf.2013.6719903
http://dx.doi.org/doi:10.1109/cvprw.2012.6239233
https://doi.org/10.5370/JEET.2016.11.6.1857
https://doi.org/10.1109/ICIEV.2015.7334030


2346                                          Adnan et al.:  Human Action Recognition via Depth Maps Body Parts of Action 
[28] Wang, J., Liu, Z., Wu, Y. and Yuan, J. "Mining actionlet ensemble for action recognition with 

depth cameras," in Proc. of Computer Vision and Pattern Recognition (CVPR) IEEE Conference 
on pp. 1290-1297, 2012. Article (CrossRef Link) 

[29] Vemulapalli, R., Arrate, F. and Chellappa, R., "Human action recognition by representing 3d 
skeletons as points in a lie group," in Proc. of Proceedings of the IEEE conference on computer 
vision and pattern recognition pp. 588-595, 2014. Article (CrossRef Link) 

[30]  Y. Yang et al., “Latent max-margin multitask learning with skelets for 3D action recognition,” 
IEEE Trans. Cybern.,vol. 47, no2, pp.439-448, 2017. Article (CrossRef Link) 

[31]  C. Chen R. Jafari, N. Kehtarnavaz,, "Improving human action recognition using fusion of depth 
camera and inertial sensors," IEEE Trans. Hum.-Mach. Syst., vo. 45, no. 1.  , pp. 51–61, 2015. 
Article (CrossRef Link) 

[32] G. Stiglic, P.  Kokol, "Effectiveness of rotation forest in meta-learning based gene Expression 
classification," in Proc. of  Twentieth IEEE International Symposium on Computer-Based 
Medical Systems, pp. 243–250, 2007. Article (CrossRef Link) 

[33] K.-H. Liu, D.-S. Huang, "Cancer classification using rotation forest," Comput. Biol. Med., vo. 38, 
no. 5, pp. 601–610, 2008. Article (CrossRef Link) 

[34] J.J Rodriguez,L.I.  Kuncheva, C.J Alonso, "Rotation Forest: A new classifier ensemble method," 
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1619–1630, 2006.                          
Article (CrossRef Link) 

[35] S. Wold, K. Esbensen, P. Geladi, "Principal component analysis," Chemom. Intell. Lab. Syst., vo. 
2, no. 1, pp. 37–52, 1987. Article (CrossRef Link) 

[36] L.I. Kuncheva, J.J. Rodríguez, "An experimental study on rotation forest ensembles,"  in Proc. of 
International Workshop on Multiple Classifier Systems, (Springer Berlin Heidelberg), pp. 459–
468, 2007. Article (CrossRef Link) 

[37] C.-X. Zhang, J.-S.  Zhang, "RotBoost: A technique for combining rotation forest and AdaBoost," 
Pattern Recognit. Lett., vol. 29, no. 10, pp. 1524–1536, 2008. Article (CrossRef Link) 

[38]  J.-F. Xia, K. Han, D.-S. Huang, "Sequence-based prediction of protein-protein interactions by 
means of rotation forest and autocorrelation descriptor," Protein Pept. Lett., vo. 17, no. 1, pp. 137–
145, 2010. Article (CrossRef Link) 

[39] S.B. Kotsiantis, P.E. Pintelas, "Local rotation forest of decision stumps for regression problems," 
in  Proc. of 2nd IEEE International Conference on Computer Science and Information 
Technology, pp. 170–174, 2009. Article (CrossRef Link) 

[40] M. Shaheryar, M. Khalid, A.M. Qamar, "Rot-SiLA: A novel ensemble classification approach 
based on rotation forest and similarity learning using nearest neighbor algorithm," in Proc. of  12th 
International Conference on Machine Learning and Applications, pp. 46–51, 2013.                   
Article (CrossRef Link) 

[41] J. Xia, P. Du., X. He, J. Chanussot, "Hyperspectral remote sensing image classification based on 
rotation forest," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 239–243, 2014.                 
Article (CrossRef Link) 

[42] M. Zanfir, M. Leordeanu, and C. Sminchisescu, "The moving pose: An efficient 3d kinematics 
descriptor for low-latency action recognition and detection," in Proc. of Proceedings of the IEEE 
International Conference on Computer Vision, pp. 2752-2759, 2013. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1109/CVPR.2012.6247813
https://doi.org/10.1109/CVPR.2014.82
https://doi.org/10.1109/TCYB.2016.2519448
http://dx.doi.org/doi:10.1109/THMS.2014.2362520
http://dx.doi.org/doi:10.1109/CBMS.2007.43
http://dx.doi.org/doi:10.1016/j.compbiomed.2008.02.007
http://dx.doi.org/doi:10.1109/TPAMI.2006.211
http://dx.doi.org/doi:10.1016/0169-7439(87)80084-9
http://dx.doi.org/doi:10.1007/978-3-540-72523-7_46
http://dx.doi.org/doi:10.1016/j.patrec.2008.03.006
https://doi.org/10.2174/092986610789909403
http://dx.doi.org/doi:10.1109/iccsit.2009.5234453
http://dx.doi.org/doi:10.1109/icmla.2013.16
http://dx.doi.org/doi:10.1109/LGRS.2013.2254108
https://doi.org/10.1109/ICCV.2013.342


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 5, May 2018                                   2347 

 
Adnan Farooq received his B.S degree in Computer Engineering from COMSATS 
Institute of Science and Technology, Abbottabad, Pakistan and M.S. degree in Biomedical 
Engineering from Kyung Hee University, Republic of Korea. His research interest includes 
Image Processing, Computer vision. 
 
 
 
 
 
Faisal Farooq received his B.S degree in Electronics Engineering from    COMSATS 
Institute of Science and Technology, Abbottabad, Pakistan and M.S. degree in Biomedical 
Engineering from Kyung Hee University, Republic of Korea. His research interest includes 
Image Processing, Signal Processing, and Pattern Recognition. 
 
 
 
 
 

Anh Vu Le is at Optoelectronics Research Group, Faculty of Electrical and Electronics 
Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam. He received his 
BS in Electronics and Telecommunications from Ha Noi University of Technology, 
Mater and PHD degrees in Electronics and Electrical from the Dongguk University in 
2007 and 2012, respectively. His current research interests include Robotics vision, 
human detection, action recogntion, feature matching, 3D video processing. 
 
 

 


