• 제목/요약/키워드: Deposition mechanism

검색결과 557건 처리시간 0.035초

경도제거용 나노여과막의 표면 특성 분석 및 막오염기작 연구 (Surface Characterization of NF membranes for Hardness Removal and Its Implications to Fouling Mechanisms)

  • 함상우;김영진;김충환;;홍승관
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.559-567
    • /
    • 2013
  • In recent years, NF (nanofiltration) membrane has been receiving great attention for hardness removal and has begun to replace traditional lime soda ash softening process, particularly in Florida, USA, mainly due to less sludge production and easy operation. This study aimed to provide detailed surface characteristics of various commercial NF membranes by performing sophisticated surface analysis, which would help more fundamentally understand the performance of NF membranes. More specifically, a total of 7 NF membranes from top NF/RO manufacturers in the world were examined for basic performance tests, surface analysis, and fouling potential assessment. The results demonstrated that NF membranes are classified into two groups in terms of surface zeta potential; they are highly negatively charged ones, and neutral and/or less negatively charged ones. Their hydrophobicities, measured by contact angle, varied from hydrophilic to slightly hydrophobic ones. The AFM measurements showed various surface roughness, ranging from 23 nm (smooth) to 162 nm (rough) of average peak height. Lab-scale fouling experiments were performed using feedwater obtained from conventional water treatment plants in the province of Korea, and their results attempted to correlate to surface characteristics of NF membranes. However, unlike typical RO membranes, no clear correlation was found in this study, indicating that fouling mechanisms of NF membrane may be different from those of typical RO membranes, and both cake deposition and pore blocking mechanisms should be considered simultaneously.

낙동강 하구역 삼각주 발달에 관한 문헌 고찰 연구 (Delta Development in the Nakdong River Estuary: a Literature Survey)

  • 윤한삼;유창일;강윤구;류청로
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.22-34
    • /
    • 2007
  • We present basic data for developing new research topics and closely examine the existing data on the development and organization of the Nakdong River Estuary Delta by analyzing various studies of the area, including ocean engineering, coastal engineering, ocean environmental engineering, geomorphological, and geological studies. We first defined the general concepts related to the estuary and delta and reviewed the historical development of the Nakdong River Estuary Delta over the past 100 years. We then examined the origin and core elements of the estuary deposits that constitute the delta. In addition, we scrutinized the main factors affecting the development of the delta and analyzed existing research on delta development mechanisms by core researchers. The construction of an estuary barrage is one of the main factors effecting estuarine circulation and has altered the physical oceanic environment, area of deposition, atmospheric environment, and vegetation community of the delta. These factors affect the estuary circulation in turn, altering the delta. Along the Nakdong River, an unsteady-state sandy barrier appears at approximately three times the distance of the wavelength of incident offshore waves, and this terrain forms approximately 10-15 years after reclamation in the interdistributary upper stream and transforms the shoreline. It is necessary to develop a technique to predict terrain change that reproduces the erosion and accumulation of estuarine deposits. To determine the parameters and variables necessary to reproduce this system, continuous on-site monitoring is necessary. The existing research did not fully examine the terrain changes in Nakdong River Estuary or the periodic developmental characteristics. To understand the future process of estuary delta development, it is necessary to establish an integrated management system.

해운대(海雲臺) 해수욕장(海水浴場)의 해빈변형기구(海濱變形機構) (Beach Deformation Mechanisms in Haeundae Beach)

  • 이종섭;박일흠;김차겸
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.595-605
    • /
    • 1994
  • 해운대(海雲臺) 해수욕장(海水浴場)의 단(短) 장기적(長期的)인 해빈변형기구(海濱變形機構)를 파악하기 위하여 기존자료(旣存資料)의 수집분석(收集分析), 현지조사(現地調査) 및 수치모형실험(數値模型實驗)을 실시하였다. 해안선(海岸線) 및 해빈기면(海濱祈面) 측정자료(測定資料)의 해석(解釋)을 통하여 태풍통과(颱風通過)에 의한 해빈(海濱)의 퇴적(堆積) 및 침식기구(浸蝕機構)를 모식적(模式的)으로 설명하였다. 이러한 단기적(短期的)인 해빈변형기구(海濱變形機構)는 입사파(入射波)의 파향(波向)과 쇄파대(碎波帶)에서 발생하는 해빈류(海濱流)와 밀접한 관계(關係)가 있는 것으로 나타났다. 그리고 해빈폭(海濱幅) 실측자료(實測資料)를 이용한 해안선변형모형(海岸線變形模型)의 검증(檢證)을 통하여 대표파(代表波)의 제원(諸元)과 검증(檢證)파라미터를 도출하였다. 해운대(海雲臺) 해안(海岸)은 주입사(主入射) 파향(波向)이 SE계(系)이므로 장기적(長期的)으로는 동쪽에서 서쪽으로의 연안표사(沿岸漂砂)가 탁월하게 존재한다. 따라서 동쪽해안에서는 표사(漂砂)의 공급원(供給源)이 없으므로 해안침식(海岸浸蝕)을 일으키게 되고, 서쪽해안에 퇴적(堆積)한 모래는 폭풍시(暴風時) 고파랑(高波浪)에 의하여 외해(外海)쪽으로 유실(流失)된다.

  • PDF

얇은 수직 사각유로에서의 포화비등조건 임계열유속 예측 (Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels)

  • 최길식;장순흥;정용훈
    • 대한기계학회논문집B
    • /
    • 제39권12호
    • /
    • pp.953-963
    • /
    • 2015
  • 산업적으로 얇은 사각유로에서의 임계열유속을 포함한 열수력 현상을 이해하고 이를 시스템 설계에 반영해야 될 필요성이 증대되고 있다. 포화비등조건에서 임계열유속이 발생하는 주요기구는 일반적으로 환상유동 영역에서 액막이 건조되는 것이다. 이러한 임계열유속을 예측하기 위하여 원형관에 대한 대표적인 액막건조모델을 고찰하고 환상유동 시작 경계조건을 상수로 가정하는 기존 모델의 한계를 살펴보았다. 균일한 열유속으로 가열되는 얇은 수직사각유로 상향유동에서의 임계열유속을 예측하기 위하여 환상유동을 단순 모델링하고, 새로운 액막건조모델을 적용하였다. 284 개 실험데이타에 대한 예측성능을 확인한 결과 MAE 18.1%, RMSE 22.9% 예측오차로 실험데이타를 잘 예측할 수 있음을 확인하였다.

Interrelation between Expression of ADAM 10 and MMP 9 and Synthesis of Peroxynitrite in Doxorubicin Induced Cardiomyopathy

  • Lim, Sung Cil
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.371-380
    • /
    • 2013
  • Doxorubicin is still main drug in chemotherapy with limitation of use due to adverse drug reaction. Increased oxidative stress and alteration of nitric oxide control have been involved in cardiotoxicity of doxorubicin (DOX). A Disintegrin And Metalloproteinase (ADAMs) are transmembrane ectoproteases to regulate cell-cell and cell-matrix interactions, but role in cardiac disease is unclear. The aim of this study was to determine whether DOX activates peroxynitrite and ADAM 10 and thus ADAM and matrix metalloproteinase (MMP) induce cardiac remodeling in DOX-induced cardiomyopathy. Adult male Sprague-Dawley rats were subjected to cardiomyopathy by DOX (6 times of 2.5 mg/kg DOX over 2-weeks), and were randomized as four groups. Then followed by 3, 5, 7, and 14 days after cessation of DOX injection. DOX-injected animals significantly decreased left ventricular fractional shortening compared with control by M-mode echocardiography. The expressions of cardiac nitrotyrosine by immunohistochemistry were significant increased, and persisted for 2 weeks following the last injection. The expression of eNOS was increased by 1.9 times (p<0.05), and iNOS was marked increased in DOX-heart compared with control (p<0.001). Compared to control rats, cardiac ADAM10- and MMP 9- protein expressions increased by 20 times, and active/total MMP 9 proteolytic activity showed increase tendency at day 14 after cessation of DOX injection (n=10, each group). DOX-treated $H_9C_2$ cell showed increased ADAM10 protein expression with dose-dependency (p<0.01) and morphometric changes showed the increase of ventricular interstitial, nonvascular collagen deposition. These data suggest that activation of cardiac peroxynitrite with increased iNOS expression and ADAM 10-dependent MMP 9 expression may be a molecular mechanism that contributes to left ventricular remodeling in DOXinduced cardiomyopathy.

Selonsertib Inhibits Liver Fibrosis via Downregulation of ASK1/MAPK Pathway of Hepatic Stellate Cells

  • Yoon, Young-Chan;Fang, Zhenghuan;Lee, Ji Eun;Park, Jung Hee;Ryu, Ji-Kan;Jung, Kyung Hee;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • 제28권6호
    • /
    • pp.527-536
    • /
    • 2020
  • Liver fibrosis constitutes a significant health problem worldwide due to its rapidly increasing prevalence and the absence of specific and effective treatments. Growing evidence suggests that apoptosis-signal regulating kinase 1 (ASK1) is activated in oxidative stress, which causes hepatic inflammation and apoptosis, leading to liver fibrogenesis through a mitogen-activated protein kinase (MAPK) downstream signals. In this study, we investigated whether selonsertib, a selective inhibitor of ASK1, shows therapeutic efficacy for liver fibrosis, and elucidated its mechanism of action in vivo and in vitro. As a result, selonsertib strongly suppressed the growth and proliferation of hepatic stellate cells (HSCs) and induced apoptosis by increasing Annexin V and TUNEL-positive cells. We also observed that selonsertib inhibited the ASK1/MAPK pathway, including p38 and c-Jun N-terminal kinase (JNK) in HSCs. Interestingly, dimethylnitrosamine (DMN)-induced liver fibrosis was significantly alleviated by selonsertib treatment in rats. Furthermore, selonsertib reduced collagen deposition and the expression of extracellular components such as α-smooth muscle actin (α-SMA), fibronectin, and collagen type I in vitro and in vivo. Taken together, selonsertib suppressed fibrotic response such as HSC proliferation and extracellular matrix components by blocking the ASK1/MAPK pathway. Therefore, we suggest that selonsertib may be an effective therapeutic drug for ameliorating liver fibrosis.

Nano/Micro-friction properties or Chemical Vapor Deposited (CVD) Self-assembled monolayers on Si-wafer

  • Yoon Eui-Sung;Singh R.Arvind;Han Hung-Gu;Kong Hosung
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.90-98
    • /
    • 2004
  • Nano/micro-scale studies on friction properties were conducted on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature $(24{\pm}1^{\circ}C)$ and humidity $(45{\pm}5\%)$. Nano-friction was evaluated using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Si-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples was also evaluated at the micro-scale using a micro-tribotester. It was observed that SAMs had superior frictional property due to their low interfacial energies. In order to study of the effect of contact area on friction coefficient at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientific Corporation) of different radii 0.25 mm, 0.5 mm and 1 mm at different applied normal loads $(1500,\;3000\;and\;4800{\mu}N)$. Results showed that Si-wafer had higher friction coefficient than DPDM. Furthermore, unlike that in the case of DPDM, friction was severely influenced by wear in the case of Si-wafer. SEM evidences showed that solid-solid adhesion to be the wear mechanism in Si-wafer.

  • PDF

Nano/Micro-scale friction properties of Silicon and Silicon coated with Chemical Vapor Deposited (CVD) Self-assembled monolayers

  • 윤의성;;오현진;한흥구;공호성
    • KSTLE International Journal
    • /
    • 제5권2호
    • /
    • pp.37-43
    • /
    • 2004
  • Abstract : Nano/micro-scale friction properties were investigated on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature(24$pm$1$circ$C) and humidity(45$pm$5%). Friction at nano-scale was measured using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Ssi-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples at the micro-scale was also energies. In order to study the effect of contact area on coefficient of friction at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientiffic Corporation) of different radii (0.25 mm, 0.5 mm and 1 mm) at different applied normal loads (1500, 3000 and 4800 mN). Results showed that Si-wafer had higher coefficient of friction than DPDM. Further, unlike that in the case of DPDM, friction in Si-wafer was severely influenced by its wear. SEM evidences showed that solid-solid adhesion was the wear mechanism in Si-wafer.

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF

Alteration of macronutrients, metal translocation and bioaccumulation as potential indicators of nickel tolerance in three Vigna species

  • Ishtiaq, Shabnam;Mahmood, Seema;Athar, Mohammad
    • Advances in environmental research
    • /
    • 제3권1호
    • /
    • pp.71-86
    • /
    • 2014
  • Macronutrients ($Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$), yield and yield components, bioaccumulation and translocation of metal in plant parts of three Vigna species (V. cylindrica, V. mungo, V. radiata) were evaluated at 0, 50, 100 and $150mgkg^{-1}$ soil of Nickel (Ni). A marked inhibition (p < 0.001) in the distribution of various macronutrients was noticed in these Vigna species except for $Mg^{2+}$ content of the shoot and leaves. Similarly, all species retained more $Ca^{2+}$ in their roots (p < 0.05) as compared to the aerial tissues. Ni induced a drastic decline (p < 0.001) for various yield and yield attributes except for 100 seed weight. Toxicity and accumulation of Ni in plant tissues considerably increased in a concentration dependent manner. Vigna species signify an exclusion approach for Ni tolerance as both bioaccumulation factor (BF) and translocation factor (TF) were less than 1.0. The Ni content of plants being root > shoot > leaves > seeds. Scoring for percentage stimulation and inhibition (respective to control) at varying levels of Ni revealed tolerance of the species in an order of V. radiata > V. cylindrica > V. mungo. The acquisition of Ni tolerance in V. radiata seems to occur through an integrated mechanism of metal tolerance that includes sustainable macronutrients uptake, stronger roots due to greater deposition of $Ca^{2+}$in the roots, restricted transfer of Ni to above ground tissues and seeds as well as exclusion capacity of the roots to bind appreciable amount of metal to them. Thus, metal tolerant potential of V. radiata could be of great significance to remediate metal contaminated soil owing lesser impact of Ni on macro-nutrients, hence the yield.