• Title/Summary/Keyword: Deposition area

Search Result 1,131, Processing Time 0.022 seconds

Cardioprotective Potential of Gracilaria Verrucosa Extract in Myocardial Infarction-Induced Heart Failure Model (심근 경색 유발 심부전 모델에서 강리 추출물의 심장 보호 가능성)

  • Youn Jae Jang;Hye Yoom Kim;Jung Joo Yoon;Byung Hyuk Han;Je Kuk Yu;Nam Geun Cho;Ho Sub Lee;Dae Gill Kang
    • Herbal Formula Science
    • /
    • v.31 no.3
    • /
    • pp.157-169
    • /
    • 2023
  • Gracilaria Verrucosa (GV), a seaweed used in traditional Korean medicine, was studied for its effects on MI-induced heart failure in rats. MI is caused by a blocked coronary artery, leading to severe cardiac dysfunction. The study used a rat model to assess cardiac changes over time and evaluate the impact of GV on heart failure. Ischemia was induced through LAD ligation surgery, and the extent of ischemic area was measured as a prognostic factor. GV extract administration significantly improved cardiac morphology and reduced cardiac weight compared to the MI group. GV treatment also improved cardiac function, as evidenced by positive effects on chamber dilation during MI-induced heart failure. Parameters such as ejection fraction (EF) and fractional shortening (FS) were measured. The MI group showed decreased EF and FS compared to the sham group, while these parameters improved in the GV group. GV treatment also reduced levels of LDH, CPK, and CK-MB in the serum, indicating reduced myocardial damage. Histological analysis revealed that GV treatment attenuated cardiac hypertrophy and fibrosis, with reduced collagen deposition in the myocardium. Immunohistochemistry analysis showed suppressed expression of TGF-β1 and collagen 1, involved in fibrosis. In conclusion, GV showed potential in improving cardiac function in a rat model of MI-induced heart failure. It alleviated myocardial damage, attenuated cardiac hypertrophy and fibrosis, and suppressed fibrotic markers. Further studies are needed to explore its clinical efficacy and underlying mechanisms in cardiac diseases beyond animal models.

Genetic Environments at the Ssangjeon Tungsten-bearing Hydrothermal Vein Deposit (쌍전 함 텅스텐 열수 맥상광상의 생성환경)

  • Sunjin Lee;Sang-Hoon Choi
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.689-699
    • /
    • 2022
  • The Ssangjeon tungsten deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz veins were formed by narrow open-space filling of parallel and subparallel fractures in the metasedimentary rocks as Wonnam formation, Buncheon granite gneiss, amphibolite and/or pegmatite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren quartz vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of arsenopyrite with pyrite; middle, characterized by introduction of wolframite and scheelite with Ti-Fe-bearing oxides and base-metal sulfides; late, marked by Bi-sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥370℃) and later lower temperatures (≈170℃) from H2O-CO2-NaCl fluids with salinities between 18.5 to 0.2 equiv. wt. % NaCl of Ssangjeon hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥370℃ to ≈170℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Ssangjeon hydrothermal system with increasing paragenetic time.

A Non-enzymatic Hydrogen Peroxide Sensor Based on CuO Nanoparticles/polyaniline on Flexible CNT Fiber Electrode (CuO Nanoparticles/polyaniline/CNT fiber 유연 전극 기반의 H2O2 검출용 비효소적 전기화학 센서)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.196-201
    • /
    • 2023
  • In this study, a CNT fiber flexible electrode grafted with CuO nanoparticles (CuO NPs) and polyaniline (PANI) was developed and applied to a nonenzymatic electrochemical sensor for H2O2 detection. CuO NPs/PANI/CNT fiber electrode was fabricated through the synthesis and deposition of PANI and CuO NPs on the CNT fiber surface using an electrochemical method. Surface morphology and elemental composition of the CuO NPs/PANI/CNT fiber electrode were characterized by scanning electron microscope with energy dispersive X-ray spectrometry. And its electrochemical characteristics were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). Compared with a bare CNT fiber as a control group, the CuO NPs/PANI/CNT fiber electrode showed a 4.78-fold increase in effective surface area and a 8.33-fold decrease in electron transfer resistance, which leads to excellent electrochemical properties such as a good electrical conductivity and an efficient electron transfer. These improved characteristics were due to the synergistic effect through the grafting of CNT fiber, PANI and CuO NPs. As a result, this electrode enhanced the H2O2 sensing performance.

Optimizing Graphene Growth on the Electrolytic Copper Foils by Controlling Surface Condition and Annealing Procedure (전해구리막의 표면 조건과 어닐링 과정을 통한 그래핀 성장 최적화)

  • Woo Jin Lee;Ha Eun Go;Tae Rim Koo;Jae Sung Lee;Joon Woo Lee;Soun Gi Hong;Sang-Ho Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.192-200
    • /
    • 2023
  • Graphene, a two-dimensional material, has shown great potential in a variety of applications including microelectronics, optoelectronics, and graphene-based batteries due to its excellent electronic conductivity. However, the production of large-area, high-quality graphene remains a challenge. In this study, we investigated graphene growth on electrolytic copper foil using thermochemical vapor deposition (TCVD) to achieve a similar level of quality to the cold-rolled copper substrate at a lower cost. The combined effects of pre-annealing time, graphenized temperature, and partial pressure of hydrogen on graphene coverage and domain size were analyzed and correlated with the roughness and crystallographic texture of the copper substrate. Our results show that controlling the crystallographic texture of copper substrates through annealing is an effective way to improve graphene growth properties, which will potentially lead to more efficient and cost-effective graphene production. At a hydrogen partial pressure that is disadvantageous in graphene growth, electrolytic copper had an average size of 8.039 ㎛2, whereas rolled copper had a size of 19.092 ㎛2, which was a large difference of 42.1% compared to rolled copper. However, at the proper hydrogen partial pressure, electrolytic copper had an average size of 30.279 ㎛2 and rolled copper had a size of 32.378 ㎛2, showing a much smaller difference of 93.5% than before. This observation suggests this potentially leads the way for more efficient and cost-effective graphene production.

Secreotory Leukocyte Protease Inhibitor Regulates Bone Formation via RANKL, OPG, and Runx2 in Rat Periodontitis and MC3T3-E1 Preosteoblast

  • Seung-Yeon Lee;Soon-Jeong Jeong;Myoung-Hwa Lee;Se-Hyun Hwang;Do-Seon Lim;Moon-Jin Jeong
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.282-295
    • /
    • 2023
  • Background: Secretory leukocyte protease inhibitor (SLPI) protects tissues from proteases and promotes cell proliferation and healing. SLPI also reduces periodontal inflammation and alveolar bone resorption by inhibiting proinflammatory cytokine expression in rat periodontal tissues and osteoblasts. However, little is known of the role of SLPI in the expression of osteoclast regulatory factors from osteoblasts, which are crucial for the interaction between osteoblasts and osteoclasts. Therefore, we aimed to determine the effects of SLPI on the regulation of osteoclasts and osteoblasts in LPS-treated alveolar bone and osteoblasts. Methods: Periodontitis was induced in rats using LPS. After each LPS injection, SLPI was injected into the same area. Immunohistochemical analysis was performed with antibodies against SLPI, RANKL, OPG, and Runx2 in the periodontal tissue. RT-PCR and western blotting were performed to determine the expression levels of SLPI, RANKL, OPG, and Runx2 in LPS- and SLPI/LPS-treated MC3T3-E1 cells. SLPI/LPS-treated MC3T3-E1 cells were also stained with Alizarin Red S. Results: Immunohistochemical analysis showed that the expression levels of SLPI, OPG, and Runx2 were higher while that of RANKL was lower in the LPS/SLPI group relative to those in the LPS group. The mRNA and protein expression of SLPI, OPG, and Runx2 was higher in SLPI/LPS/MC3T3-E1 cells than in LPS/MC3T3-E1 cells, and RANKL expression was lower. During differentiation, OPG and Runx2 protein levels were higher whereas RANKL levels were lower in SLPI/LPS/MC3T3-E1 than in LPS/MC3T3-E1 cells on days 0, 4, 7, and 10. In addition, mineralization and matrix deposition were higher in SLPI/LPS/MC3T3-E1 than in LPS/MC3T3-E1 on days 7 and 10. SLPI decreased RANKL expression in LPS-treated alveolar bone and osteoblasts but increased the expression of OPG and Runx2. Conclusion: SLPI can be considered as a regulatory molecule that indirectly regulates osteoclast activation via osteoblasts and promotes osteoblast differentiation.

Estimation of the Amount of Mining and Waste Rocks at Musan Mine in North Korea Using a Historical Map and SRTM and Copernicus Global Digital Elevation Models (조선지형도와 SRTM 및 Copernicus 글로벌 수치지형모델을 이용한 북한 무산광산의 채광량 및 폐석 적치량 추정)

  • Yongjae Chu;Hoonyol Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.495-505
    • /
    • 2023
  • The Musan mine, situated in Musan County, Hamgyong Province, North Korea, stands as a prominent open-pit iron mine on the Korean Peninsula. This study focuses on estimating the mining and dumping activities within the Musan mine area by analyzing digital elevation model (DEM) changes. To calculate the long-term volume changes in the Musan mine, we digitized and converted the 1:200,000-scale third topographic map of the Joseon published in 1918 and compared with interferometric synthetic aperture radar (InSAR) DEMs, including Shuttle Radar Topography Mission DEM (2000) and Copernicus DEM (2011-2015). The findings reveal that over a century, Musan mine yielded around 1.37 billion tons of iron ore, while approximately 1.06 billion tons of waste rock were dumped. This study is particularly significant as it utilizes a historical topographic map predating the full-scale development of Musan mine to estimate a century's mining production and waste rock deposition. It is expected that this research provides valuable insights for future investigation of surface change of North Korea where the acquisition of in situ data remains challenging.

Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor (유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.233-237
    • /
    • 2024
  • This study is about the fabrication of a flexible electrode based on PAN-based carbon fibers tow using organic/inorganic nanocomposite and its application of non-enzymatic sensor. The organic/inorganic nanocomposite was composed of the conductive polymer polyaniline (PANI) and the metal oxide CuO. And glucose was used as the target of the electrochemical sensor. Commercialized CFTs were pretreated through heat treatment for desizing and electrochemical oxidation for activation. This nanocomposite was sequentially synthesized on the pretreated CFT surface using electrochemical polymerization and electrochemical deposition. Finally, the CFT/PANI/CuO NPs electrode was obtained. The electrochemical properties and sensing performance of the CFT/PANI/CuO NPs electrode were analyzed using chronoamperometry (CA), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The sensitivity of the CFT/PANI/CuO NPs electrode was about 8.352 mA/mM (in a linear range of 0.445~6.674 mM) and 3.369 mA/mM (in a linear range of 6.674~50 mM), respectively. So, the CFT/PANI/CuO NPs electrode exhibited the enhanced sensing performances due to unique properties such as small peak potential separation, low electron transfer resistance, and large specific surface area.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF

Gold-Silver Mineralization of the Geojae Area (거제(巨濟)지역 금(金)-은(銀)광상의 광화작용(鑛化作用) 연구)

  • Choi, Seon-Gyu;Chi, Se-Jung;Yun, Seong-Taek;Koh, Yong-Kwon;Yu, Jae-Shin
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.303-314
    • /
    • 1989
  • The electrum-silver-sulfide mineralization of the Geojae island area was deposited in three stages (I, II, and carbonate) of quartz and calcite veins that crosscut Late Cretaceous volcanic rocks and granodiorite(83 m.y.). Stages I and II were terminated by the onset of fractunng and breCCIation events. Fluid inclusion data suggest that the gold-sulfide-bearing stages I and II each evolved from an initial high temperature( near $370^{\circ}C$) to a later low temperature(near $200^{\circ}C$). Each of those stages represented a separate mineralizing system which cooled prior to the onset of the next stage. The relationship between homogenization temperature and salinity in stages I and II suggests a complex history of boiling, cooling and dilution. Evidence of boiling indicates a pressure of < 100 bars, corresponding to a depth of 500 to 1,250m assummg hthostatlc and hydrostatic pressure regimes, respectively. Fluid inclusion and mineralogical evidence suggest that the electrum-silver mineralization was deposited at a temperature of $220-260^{\circ}C$ from ore fluids with salinities between 1.9 and 8.1 equivalent wt.% NaCl. Total sulfur concentration is estimated to be $10^{-3}$ to $10^{-4}$ molal. The estimated $fs_2$ and $fo_2$ range from $10^{-11.8}$ to $10^{-14}$ atm and $10^{-35}$ to $10^{-36}$ atm, respectively. The chemical conditions indicate that the dominant sulfur species in the ore forming fluids was a reduced form($H_2S$). Rapid cooling and dilution of ore-forming fluids by mixing with less-evolved meteoric waters led to gold-silver deposition through the breakdown of the bisulfide complex($Au(HS)_2$) as the activity of $H_2S$ decreased.

  • PDF

Occurrence and Cenesis of Perlite from the Beomgockri Group in Janggi Area (장기지역 범곡리층군에 부존되는 진주암의 산출상태와 생성관계)

  • Noh Jin Hwan;Hong Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.277-288
    • /
    • 2005
  • Perlite, a hydrated volcanic glass, occurs mainly as a bed-like body, and is distributed intermittently along the unconformity surface between the Beomgockri Group and its lower formations, viz. Janggi Group. The perlite is intimately associated with surrounding pumiceous welded tuff and rhyodacites in space and time. Compared to the typical perlite, the perlite is rather silica-poor and impure, and thus, includes lots of phenocrysts and rock fragments. Nearly the perlite is compositionally rather close to a pitchstone than a perlite in water contents. Petrographic comparison between perlite and associated volcanic to volcaniclastic rocks indicates that pumiceous welded tuff and rhyodacite seem to be Protolith of the Perlite. A Zr/$TiO_{2}$-Nb/Y diagram and field occurrence of perlite and their protolithic rocks also conforms the above interpretation. Kn addition, remnant vesicles in perlite strongly reflect that the precursor of perlitic glass appeared to be pumice fragment as well as volcanic glass. The perlite was diagenetically formed by way of a pervasive water-rock interaction at the deposition of the Manghaesan Formation in lacustrine environment. During perlitization, $SiO_{2}$ and alkali tend to be consistently depleted. Preexisting system of the Beomgockri Group based on the perlite formation should be corrected, because the perlite was formed diagenetically without lateral persistence in its occurrence.