• Title/Summary/Keyword: Dentin sialophosphoprotein

Search Result 16, Processing Time 0.017 seconds

A Frameshift Mutation causes Dentinogenesis Imperfecta Type II (상아질 형성부전증 제 II 형의 원인이 되는 Frameshift 돌연변이)

  • Hong, Jiwon;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Lee, Sang-Hoon;Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.2
    • /
    • pp.164-169
    • /
    • 2017
  • Dentinogenesis imperfecta type II (DGI-II) is an inherited disorder affecting the dentin matrix and is related to mutations in the dentin sialophosphoprotein (DSPP) gene. The protein encoded by the DSPP gene undergoes extensive posttranslational modifications. Dentin phosphoprotein (DPP), one of the DSPP expressed products, has unique composition with highly repetitive Asp-Ser-Ser amino acid residues and is related to the maturation of dentin mineralization. We aimed to identify mutation in DSPP, including the DPP coding region, contributing to inherited dentin defects in a Korean family with DGI-II. Clinical and radiographic examinations were performed, and all five exons and exon-intron boundaries of the DSPP gene were sequenced. Additionally, allele-specific cloning for highly repetitive DPP region was performed. By sequencing and cloning, a heterozygous single nucleotide deletion (c.2688delT) was identified. The identified mutation caused a frameshift in the DPP coding region. This frameshift mutation would introduce hydrophobic amino acids instead of hydrophilic amino acids and would result in a change in the characteristics of DPP.

Changes in SIRT gene expression during odontoblastic differentiation of human dental pulp cells

  • Jang, Young-Eun;Go, Su-Hee;Lee, Bin-Na;Chang, Hoon-Sang;Hwang, In-Nam;Oh, Won-Mann;Hwang, Yun-Chan
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.223-228
    • /
    • 2015
  • Objectives: The aim of this study was to investigate the expression of 7 different sirtuin genes (SIRT1-SIRT7) in human dental pulp cells (HDPCs), and to determine the role of SIRTs in the odontoblastic differentiation potential of HDPCs. Materials and Methods: HDPCs were isolated from freshly extracted third molar teeth of healthy patients and cultulred in odontoblastic differentiation inducing media. Osteocalcin (OCN) and dentin sialophosphoprotein (DSPP) expression was analyzed to evaluate the odontoblastic differentiation of HDPCs by reverse transcription-polymerase chain reaction (RT-PCR), while alizarin red staining was used for the mineralization assay. To investigate the expression of SIRTs during odontoblastic differentiation of HDPCs, real time PCR was also performed with RT-PCR. Results: During the culture of HDPCs in the differentiation inducing media, OCN, and DSPP mRNA expressions were increased. Mineralized nodule formation was also increased in the 14 days culture. All seven SIRT genes were expressed during the odontogenic induction period. SIRT4 expression was increased in a time-dependent manner. Conclusions: Our study identified the expression of seven different SIRT genes in HDPCs, and revealed that SIRT4 could exert an influence on the odontoblast differentiation process. Further studies are needed to determine the effects of other SIRTs on the odontogenic potential of HDPCs.

Effect of dentin treatment on proliferation and differentiation of human dental pulp stem cells

  • Park, Minjeong;Pang, Nan-Sim;Jung, Il-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.4
    • /
    • pp.290-298
    • /
    • 2015
  • Objectives: Sodium hypochlorite (NaOCl) is an excellent bactericidal agent, but it is detrimental to stem cell survival, whereas intracanal medicaments such as calcium hydroxide ($Ca[OH]_2$) promote the survival and proliferation of stem cells. This study evaluated the effect of sequential NaOCl and $Ca(OH)_2$ application on the attachment and differentiation of dental pulp stem cells (DPSCs). Materials and Methods: DPSCs were obtained from human third molars. All dentin specimens were treated with 5.25% NaOCl for 30 min. DPSCs were seeded on the dentin specimens and processed with additional 1 mg/mL $Ca(OH)_2$, 17% ethylenediaminetetraacetic acid (EDTA) treatment, file instrumentation, or a combination of these methods. After 7 day of culture, we examined DPSC morphology using scanning electron microscopy and determined the cell survival rate with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We measured cell adhesion gene expression levels after 4 day of culture and odontogenic differentiation gene expression levels after 4 wk using quantitative real-time polymerase chain reaction. Results: DPSCs did not attach to the dentin in the NaOCl-treated group. The gene expression levels of fibronectin-1 and secreted phosphoprotein-1 gene in both the $Ca(OH)_2$- and the EDTA-treated groups were significantly higher than those in the other groups. All $Ca(OH)_2$-treated groups showed higher expression levels of dentin matrix protein-1 than that of the control. The dentin sialophosphoprotein level was significantly higher in the groups treated with both $Ca(OH)_2$ and EDTA. Conclusions: The application of $Ca(OH)_2$ and additional treatment such as EDTA or instrumentation promoted the attachment and differentiation of DPSCs after NaOCl treatment.

Characterization of Differentiation of the Supernumerary Dental Pulp Stem Cells toward the Odontoblast by Application Period of Additives (과잉치 치수유래 줄기세포의 분화제 처리 기간에 따른 상아모세포 발현 특성)

  • Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.4
    • /
    • pp.312-318
    • /
    • 2015
  • The aim of this study was to investigate the possibility of the supernumerary teeth for the stem cell source in dentistry. The Real Time Quantitative Reverse Transcription Polymerase Chain Reaction (Real Time qRT-PCR) method was used to evaluate the differentiation toward the odontoblast of the supernumerary dental pulp stem cells (sDPSCs). Supernumerary dental pulp stem cells were obtained from 3 children (2 males and 1 female, age 7 to 9) diagnosed that the eruption of permanent teeth was disturbed by supernumerary teeth. The common genes for odontoblasts are alkaline phosphatase (ALP), osteocalcin (OC), osteonectin (ON), dentin matrix acidic phosphoprotein 1 (DMP-1), dentin sialophosphoprotein (DSPP). The sDPSCs were treated for 0 days, 8 days and 14 days with additives and then Real Time qRT-PCR was performed in intervals of 0 days, 8 days and 14 days. The alizarin-red solution staining was performed to visualize the stained color for the degree of calcification at 7 days, 14 days, 21 days and 28 days after treating additives to the sDPSCs. From the result of the Real Time qRT-PCR, the manifestation exhibit maximum value at 8 days after additive treatment and shifted to a decrease trend at 14 days. Alizarin-red solution staining exhibit light results at 7 days after staining and generalized dark result at 14 days. Consequently, in studies with sDPSCs, appropriate treatment time of additives for Real Time qRT-PCR is 8 days. Also, a suitable period of Alizarin-red solution staining is 14 days.

Characterization of Odontoblasts in Supernumerary Tooth-derived Dental Pulp Stem Cells between Passages by Real-Time PCR (과잉치 치수유래 줄기세포의 Real-time PCR에 의한 계대간 상아질모세포 발현 특성)

  • Ji, Sangeun;Song, Sol;Lee, Joonhaeng;Kim, Jongbin;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.291-301
    • /
    • 2021
  • The aim of this study is to compare the properties of odontoblast gene of early passage cells and late passage cells derived from impacted maxillary supernumerary teeth. Impacted supernumerary teeth with maxilla were extracted from 12 patients (8 males, 4 females) between 6 - 9 years old without medical history. Real-time polymerase chain reaction (PCR) was conducted to compare characterization of odontoblast cell in the 3rd and 10th passage, and between with bone inducing additive group and without additive group. Genes for odontoblasts characteristics are osteonectin (ONT), alkaline phosphatase (ALP), osteocalcin (OCN), dentin matrix protein 1 (DMP-1) and dentin sialophosphoprotein (DSPP). The level of gene expression was in a decreasing order of ONT, ALP, OCN, DMP-1 and DSPP in the 3rd passage, and in decreasing order of ONT, DMP-1, OCN, ALP, and DSPP in the 10th passage in the undifferentiation and differentiation group. The order of ONT, DMP-1, and OCN did not changed. ALP and DMP-1 were switched in order. ALP and DMP-1 may be used as important markers for differentiating between the 3rd passage and 10th passage cells. Considering that supernumerary tooth was extracted young age and the time required to cultured 10th passage was short, supernumerary tooth can be considered a useful donor site of dental pulp stem cells.

Gene Expression of Supernumerary Dental Pulp Related to the Subculture Speed: A Pilot Study (계대 배양 속도가 다른 과잉치 치수유래 줄기세포 간 유전자 발현 특성)

  • Lee, Yookyung;Kim, Jongsoo;Shin, Jisun;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.219-225
    • /
    • 2019
  • The purpose of this study was to investigate the odontoblast gene expression related to the subculture speed of supernumerary dental pulp stem cells (sDPSCs). The stem cell is undifferentiated cells which has the ability to differentiate into various cells. Specific stimulation or environment induces cell differentiation, and these differentiation leads to bone or muscle formation. 20 sDPSCs were obtained from 20 children under aseptic condition. During the culture through the 10th passage, the third passage cells which showed short subculture period and 10th passage cells which showed long subculture period were earned. Each cell was divided into differentiated group and non-differentiated group. Quantitative real-time polychain reaction (q-RT-PCR) was performed for each group. The genes related to odontoblast differentiation, Alkaline Phosphatase (ALP), Osteocalcin (OCN), Osteonectin (ONT), Dentin sialophosphoprotein (DSPP) and Dentin matrix acidic phosphoprotein 1 (DMP-1), were measured. Differentiated cells showed more gene expression levels. Undifferentiated cells showed higher gene expression level in 10th passages but differentiated cells showed higher gene expression level in 3rd passages. Cells that showed faster subculture period showed relatively lower gene expression level except for OCN and DSPP.

The Effect of Over-expression and Inactivation of Nuclear Factor I-C on the Dentin Matrix Gene Expression of MDPC-23 Odontoblasts (Nuclear Factor I-C 과발현과 발현억제가 MDPC-23 상아모세포주의 상아질 기질유전자 발현에 미치는 영향)

  • Bae, Hyun-Sook;Cho, Young-Sik
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.427-433
    • /
    • 2009
  • Nuclear factor I-C (NFI-C) null mice demonstrated aberrant odontoblast differentiation and abnormal dentin formation. In order to elucidate the mechanisms responsible for these changes, we evaluated the expression of dentin matrix gene after over-expression and inactivation of NFI-C in MDPC-23 cells by reverse transcription-polymerase chain reaction (RT-PCR) analysis. Collagen type I (Col I), osteocalcin (OC), and dentin sialophosphoprotein (DSPP) expression was decreased after inactivation of NFI-C. However, bone sialoprotein (BSP) expression was dramatically increased after inactivation of NFI-C. ALP and DMP4 expression was not changed after inactivation of NFI-C. The expression of alkaline phoshatase (ALP) and dentin matrix protein 4 (DMP4) was increased after over-expression of NFI-C, while Col I, OC, DSPP, and BSP expression was decreased. These findings suggest that odontoblasts after loss of NFI-C lost the phenotype of odontoblasts and acquired those of osteoblasts.

  • PDF

EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF ODONTOBLAST-DERIVED GENE: OD314 (상아모세포 관련 유전자, OD314의 발현과 기능 연구)

  • Kim, Doo-Hyun;Kim, Heung-Joong;Jeong, Moon-Jin;Son, Ho-Hyun;Park, Joo-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.399-408
    • /
    • 2004
  • Odontoblasts are responsible for the formation and maintenance of dentin. They are known to synthesize unique gene products including dentin sialophosphoprotein (DSPP). Another unique genes of the cells remain unclear. OD314 was isolated from the odontoblasts/pulp cells of rats and partially characterized as an odontoblast-enriched gene (Dey et al., 2001). This study aimed to elucidate the biological function of OD314, relating to odontoblast differentiation and dentinogenesis. After determining the open reading frame (ORP) of OD314 by transient transfection analysis using green fluorescent protein (GPP) expression vector, mRNA in-situ hybridization, immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and western analysis were performed. The results were as follows: 1. In in-situ hybridization, OD314 mRNAs were expressed in odontoblasts of developing coronal and root pulp. 2. OD314 was a novel protein encoding 154 amino acids, and the protein was mainly expressed in cytoplasm by transient transfection analysis. 3. Mineralized nodules were associated with multilayer cell nodules in the culture of human dental pulp cells and first detected from day 21 using alizarin-red S staining. 4. In RT-PCR analysis, OD314, osteocalcin (OC) and DSPP strongly expressed throughout 28 days of culture. Whereas, osteonectin (ON) mRNA expression stayed low up to day 14, and then gradually decreased from day 21. 5. Western blots showed an approximately 17 kDa band. OD314 protein was expressed from the start of culture and then increased greatly from day 21. In conclusion, OD314 is considered as an odontoblast-enriched gene and may play important roles in odontoblast differentiation and dentin mineralization.

Nicotinamide phosphoribosyltransferase regulates the cell differentiation and mineralization in cultured odontoblasts

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Seo, Jeong-Yeon;Lim, HyangI;Kim, Tae-Hyeon;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Park, Joo-Cheol;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The aim of the present study was to investigate the physiological role of nicotinamide phosphoribosyltransferase (NAMPT) associated with odontogenic differentiation during tooth development in mice. Mouse dental papilla cell-23 (MDPC-23) cells cultured in differentiation media were stimulated with the specific NAMPT inhibitor, FK866, and Visfatin (NAMPT) for up to 10 days. The cells were evaluated after 0, 4, 7, and 10 days. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The mineralization assay was performed by staining MDPC-23 cells with Alizarin Red S solution. After cultivation, MDPC-23 cells were harvested for quantitative PCR or Western blotting. Analysis of variance was performed using StatView 5.0 software (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05. The expression of NAMPT increased during the differentiation of murine odontoblast-like MDPC-23 cells. Furthermore, the up-regulation of NAMPT promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers, such as dentin sialophosphoprotein, dentin matrix protein-1, and alkaline phosphatase in MDPC-23 cells. However, treatment of the cells with the NAMPT inhibitor, FK866, attenuated odontogenic differentiation, as evidenced by the suppression of odontoblastic biomarkers. These data indicate that NAMPT regulated odontoblastic differentiation through the regulation of odontoblastic biomarkers. The increase in NAMPT expression in odontoblasts was closely related to the formation of the extracellular matrix and dentin via the Runx signaling pathway. Therefore, these data suggest that NAMPT is a critical regulator of odontoblast differentiation during tooth development.

Comparison of Gene Expression from Supernumerary Dental Pulp and Periodontal Ligament Stem Cells (과잉치 치수 세포와 치주인대 세포의 유전자 발현 비교)

  • Lee, Sangeun;Kim, Jongbin;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.2
    • /
    • pp.242-249
    • /
    • 2018
  • The purpose of this study is to compare the properties of dental pulp and periodontal ligament stem cells from extracted supernumerary teeth by quantitative real-time PCR. Impacted supernumerary teeth in the maxillary anterior region were extracted. Dental pulp and periodontal ligament cells were collected from extracted supernumerary teeth on the same day. After isolation and culture of cells, compare characterization of them by using qRT-PCR. Primer sequences for odontoblasts are ONT, ALP, OCN, DMP-1 and DSPP. On dental pulp group, ONT has the largest quantity of gene expression, followed by OCN, ALP, DMP-1 and DSPP. On periodontal ligament group, ONT has the largest quantity of gene expression, followed by OCN, ALP, DSPP and DMP-1. Analysis of quantitative gene expression data using relative quantification showed that the expression of all genes decreased in periodontal ligament cells. Dental pulp and periodontal ligament stem cells from supernumerary teeth have the properties of odontoblasts. Considering that properties, supernumerary teeth were considered a useful donor site of dental pulp and periodontal ligament stem cells.