DOI QR코드

DOI QR Code

Characterization of Odontoblasts in Supernumerary Tooth-derived Dental Pulp Stem Cells between Passages by Real-Time PCR

과잉치 치수유래 줄기세포의 Real-time PCR에 의한 계대간 상아질모세포 발현 특성

  • Ji, Sangeun (Cheonan Ebargae Orthodontic Clinic) ;
  • Song, Sol (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Lee, Joonhaeng (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Kim, Jongbin (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Kim, Jongsoo (Department of Pediatric Dentistry, College of Dentistry, Dankook University)
  • 지상은 (천안 이바르게 치과교정과) ;
  • 송솔 (단국대학교 치과대학 소아치과학교실) ;
  • 이준행 (단국대학교 치과대학 소아치과학교실) ;
  • 김종빈 (단국대학교 치과대학 소아치과학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실)
  • Received : 2021.03.12
  • Accepted : 2021.03.22
  • Published : 2021.08.31

Abstract

The aim of this study is to compare the properties of odontoblast gene of early passage cells and late passage cells derived from impacted maxillary supernumerary teeth. Impacted supernumerary teeth with maxilla were extracted from 12 patients (8 males, 4 females) between 6 - 9 years old without medical history. Real-time polymerase chain reaction (PCR) was conducted to compare characterization of odontoblast cell in the 3rd and 10th passage, and between with bone inducing additive group and without additive group. Genes for odontoblasts characteristics are osteonectin (ONT), alkaline phosphatase (ALP), osteocalcin (OCN), dentin matrix protein 1 (DMP-1) and dentin sialophosphoprotein (DSPP). The level of gene expression was in a decreasing order of ONT, ALP, OCN, DMP-1 and DSPP in the 3rd passage, and in decreasing order of ONT, DMP-1, OCN, ALP, and DSPP in the 10th passage in the undifferentiation and differentiation group. The order of ONT, DMP-1, and OCN did not changed. ALP and DMP-1 were switched in order. ALP and DMP-1 may be used as important markers for differentiating between the 3rd passage and 10th passage cells. Considering that supernumerary tooth was extracted young age and the time required to cultured 10th passage was short, supernumerary tooth can be considered a useful donor site of dental pulp stem cells.

이 연구의 목적은 발거 된 매복 상악 과잉치에서 얻은 치수유래 줄기세포의 초기 계대와 후기 계대의 상아질모세포 유전자의 특성을 알아보는 것이다. 전신 의과 병력이 없는 6 - 9세 사이의 남녀아이 12명에게서 서면동의를 얻고 모두 상악에 위치한 과잉치를 발거하여 당일 발거된 과잉치의 치수세포를 채취하였다. 12개의 세포를 각각 3계대와 10계대에서 골형성 유도 분화제를 처리한 군과 처리하지 않은 군을 나누어 실시간 중합효소 연쇄반응을 시행하여 상아질모세포의 특성을 알아보았다. 사용된 유전자는 osteonectin (ONT), alkaline phosphatase (ALP), osteocalcin (OCN), dentin matrix protein 1 (DMP-1), 그리고 dentin sialophosphoprotein (DSPP)였다. 유전자 발현양은, 분화제를 처리하지 않은 군 3계대에서는 ONT, ALP, OCN, DMP-1, DSPP순서로 많이 발현하였다. 분화제를 처리하지 않은 군 10계대에서는 ONT, DMP-1, OCN, ALP, DSPP순으로 ONT, OCN, DSPP의 순서에는 변화가 없지만 ALP, DMP-1의 순서는 서로 바뀌었다. 이상의 결과를 종합해 볼 때, ALP와 DMP-1은 3계대와 10계대 세포의 분화를 위한 중요한 표지자로 사용될 수 있다. 과잉치 치수유래 줄기세포는 상아질모세포의 특성을 가지며, 또한 과잉치가 어린 나이에 발거되고 10계대까지 소요되는 시간이 적게 걸린다는 것을 고려하면, 과잉치는 치아 유래 줄기세포의 공여부로서 훌륭한 활용가능성이 있음을 확인하였다.

Keywords

References

  1. Linde A, Goldberg M : Dentinogenesis. Crit Rev Oral Biol Med, 4:679-728, 1993. https://doi.org/10.1177/10454411930040050301
  2. Sasaki T, Garant PR : Structure and organization of odontoblasts. Anat Rec, 245:235-249, 1996. https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<235::AID-AR10>3.0.CO;2-Q
  3. Begue-Kirn C, Smith AJ, Lesot H, et al. : Comparative analysis of TGF beta s, BMPs, IGF1, msxs, fibronectin, osteonectin and bone sialoprotein gene expression during normal and in vitro-induced odontoblast differentiation. Int J Dev Biol, 38:405-420, 1994.
  4. Papagerakis P, Berdal A, Macdougall M, et al. : Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone, 30:377-385, 2002. https://doi.org/10.1016/S8756-3282(01)00683-4
  5. Gronthos S, Mankani M, Shi S, et al. : Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA, 97:13625-13630, 2000. https://doi.org/10.1073/pnas.240309797
  6. Lindroos B, Maenpaa K, Miettinen S, et al. : Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochem Biophys Res Commun, 368:329-335, 2008. https://doi.org/10.1016/j.bbrc.2008.01.081
  7. Miura M, Gronthos S, Shi S, et al. : SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA, 100:5807-5812, 2003. https://doi.org/10.1073/pnas.0937635100
  8. Huang AH, Chen YK, Chan AW, et al. : Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med, 37:571-574, 2008. https://doi.org/10.1111/j.1600-0714.2008.00654.x
  9. Sun HJ, Bahk YY, Lee JW, et al. : A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res, 24:2059-2071, 2006. https://doi.org/10.1002/jor.20273
  10. Kim JS: Characterization of Differentiation of the Supernumerary Dental Pulp Stem Cells toward the Odontoblast by Application Period of Additives. J Korean Acad Pediatr Dent, 42:312-318, 2015. https://doi.org/10.5933/JKAPD.2015.42.4.312
  11. Primosch RE : Anterior supernumerary teeth-assessment and surgical intervention in children. Pediatr Dent, 3:204-215, 1981.
  12. Huang WH, Tsai TP, Su HL : Mesiodens in the primary dentition stage: a radiographic study. ASDC J Dent Child, 59:186-189, 1992.
  13. Kim JB: Managing Complications Related to Multiple Supernumerary Teeth. J Korean Acad Pediatr Dent, 41:180-186, 2014. https://doi.org/10.5933/JKAPD.2014.41.2.180
  14. Gronthos S, Brahim J, Shi S, et al. : Stem cell properties of human dental pulp stem cells. J Dent Res, 81:531-535, 2002. https://doi.org/10.1177/154405910208100806
  15. Bruder SP, Jaiswal N, Haynesworth SE : Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 64:278-294, 1997. https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
  16. Digirolamo CM, Stokes D, Prockop DJ, et al. : Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol, 107:275-281, 1999. https://doi.org/10.1046/j.1365-2141.1999.01715.x
  17. Min JH, Ko SY, Jang YJ, et al. : Dentinogenic potential of human adult dental pulp cells during the extended primary culture. Hum Cell, 24:43-50, 2011. https://doi.org/10.1007/s13577-011-0010-7
  18. Livak KJ, Schmittgen TD : Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25:402-408, 2001. https://doi.org/10.1006/meth.2001.1262
  19. Seo BM, Miura M, Shi S, et al. : Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364:149-155, 2004. https://doi.org/10.1016/S0140-6736(04)16627-0
  20. Morsczeck C, Gotz W, Hoffmann KH, et al. : Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol , 24:155-165, 2005. https://doi.org/10.1016/j.matbio.2004.12.004
  21. Sonoyama W, Liu Y, Shi S, et al. : Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One , 1:79, 2006.
  22. Huang W, Tsai T, Su H : Mesiodens in the primary dentition stage: a radiographic study. ASDC J Dent Child, 59:186-189, 1991.
  23. Kamata N, Fujimoto R, Yasumoto S, et al . : Immortalization of human dental papilla, dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J Oral Pathol Med, 33:417-423, 2004. https://doi.org/10.1111/j.1600-0714.2004.00228.x
  24. Conget PA, Minguell JJ : Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol , 181:67-73, 1999. https://doi.org/10.1002/(SICI)1097-4652(199910)181:1<67::AID-JCP7>3.0.CO;2-C
  25. Aubin JE, Liu F, Gupta AK, et al. : Osteoblast and chondroblast differentiation. Bone, 17:S77-S83, 1995.
  26. Arana-Chavez VE, Massa LF : Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol, 36:1367-1373, 2004. https://doi.org/10.1016/j.biocel.2004.01.006
  27. Termine JD, Kleinman HK, Martin GR, et al. : Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 26:99-105, 1981. https://doi.org/10.1016/0092-8674(81)90037-4
  28. Wasi S, Otsuka K, Termine JD, et al. : An osteonectinlike protein in porcine periodontal ligament and its synthesis by periodontal ligament fibroblasts. Can J Biochem Cell Biol, 62:470-478, 1984. https://doi.org/10.1139/o84-064
  29. Garcia JM, Martins MD, Marques MM, et al. : Immunolocalization of bone extracellular matrix proteins (type I collagen, osteonectin and bone sialoprotein) in human dental pulp and cultured pulp cells. Int Endod J, 36:404-410, 2003. https://doi.org/10.1046/j.1365-2591.2003.00669.x
  30. Lauc G, Heffer-Lauc M : Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochim Biophys Acta , 1760:584-602, 2006. https://doi.org/10.1016/j.bbagen.2005.11.014
  31. Hanawa M, Takano Y, Wakita M : An autoradiographic study of calcium movement in the enamel organ of rat molar tooth germs. Arch Oral Biol, 35:899-906, 1990. https://doi.org/10.1016/0003-9969(90)90070-Q
  32. Bronckers AL, Price PA, Karsenty G, et al. : Studies of osteocalcin function in dentin formation in rodent teeth. Eur J Oral Sci , 106:795-807, 1998. https://doi.org/10.1046/j.0909-8836.1998.eos106306.x
  33. Karsenty G : Role of Cbfa1 in osteoblast differentiation and function. Semin Cell Dev Biol , 11:343-346, 2000. https://doi.org/10.1006/scdb.2000.0188
  34. George A, Sabsay B, Veis A, et al. : Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem, 268:12624-12630, 1993. https://doi.org/10.1016/S0021-9258(18)31434-0
  35. D'souza RN, Cavender A, MacDougall M, et al. : Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res, 12:2040-2049, 1997. https://doi.org/10.1359/jbmr.1997.12.12.2040
  36. Rutherford RB, Wahle J, Charette M, et al. : Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol, 38:571-576, 1993. https://doi.org/10.1016/0003-9969(93)90121-2
  37. Feng JQ, Luan X, MacDougall M, et al. : Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem, 273:9457-9464, 1998. https://doi.org/10.1074/jbc.273.16.9457