• 제목/요약/키워드: Dental nickel-chromium alloy

검색결과 20건 처리시간 0.016초

도재용착주조관용 Co-Cr계 비귀금속 합금의 전단결합강도 비교평가에 관한 연구 (The study on Comparison Evaluation of Shear Bond Strength of Co-Cr Based Alloy using for Porcelain Fused Metal)

  • 김희진;김부섭
    • 대한치과기공학회지
    • /
    • 제32권3호
    • /
    • pp.195-207
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the microstructural changes of surface in the specimens, performing the shear bond strength testing. The currently most used non-precious alloys are nickel-chromium based alloys with or without beryllium. However, their biocompatibility has been questioned concerning possible damages to the health of the patient and professionals involved in the fabrication of prosthesis caused by long exposure to Ni and Be. An option to nickel-chromium alloys is the cobalt-chromium alloy, an alternative that does not sacrifice the physical properties of the metal porcelain systems. Studies in the animals substantially show that the cobalt-chromium alloys are relatively well tolerated, being therefore more biocompatible than the nickel-chromium alloys. Methods: Non-addition Be to nickel-chromium based alloy(Bellabond plus) and cobalt-chromium alloy which has been widely used(Wirobond C) fused with ZEO light porcelain classified control group and cobalt-chromium alloy which is developing alloy of Alphadent company in Korea(Alphadent alloy) fused with ZEO light porcelain classified experimental group. The specimens of $4mm{\times}4mm{\times}0.5mm$ were prepared as-cast and as-opaque to cast body to analyze the mechanical characteristic change, the microstructure of alloy surface. The phase change was used to observe through XRD analysis and OM/SEM was used to observe the surface of specimens as-cast and as-opaque to cast body. Chemical formation of their elements was measured with EDS. Then hardness was measured with Micro Vicker's hardness tester. Shear bond strength test thirty specimens of $10mm{\times}10mm{\times}2mm$ was prepared, veneered, 3mm high and 3mm in diameter, over the alloy specimens. The shear bond strength test was performed in a universal testing machine(UTM) with a cross head speed of 0.5mm/min. Ultimate shear bond strength data were analyzed with one-way ANOVA and the Scheffe's test (P<0.05). Within the limits of this study, the following conclusions were drawn: The X-ray diffraction analysis results for the as-cast and as-opaque specimens showed that the major relative intensity of Bellabond plus alloy were changed smaller than Wirobond C and Alphadent Co-Cr based alloys. Results: Microstructural analysis results for the opaque specimens showed all the alloys increased carbides and precipitation(PPT). Alphadent Co-Cr based alloy showed the carbides of lamellar type. The Vickers hardness results for the opaque specimens showed Wirobond C and Alphadent Co-Cr based alloys were increaser than before ascast, but Bellabond plus alloy relatively decreased. The mean shear bond strengths (MPa) were: 33.11 for Wirobond C/ZEO light; 25.00 for Alphadent Co-Cr alloy/ZEO light; 18.02 for Bellabond plus/ZEO light. Conclusion: The mean shear bond strengths for Co-Cr and Ni-Cr based alloy were significantly different. But the all groups showed metal-metal oxide modes in shear bond strengths test at the interface.

침적법과 전기화학법을 이용한 티타늄의 갈바닉 부식에 관한 연구 (A STUDY ON THE GALVANIC CORROSION OF TITANIUM USING THE IMMERSION AND ELECTROCHEMICAL METHOD)

  • 계기성;정재헌;강동완;김병옥;황호길;고영무
    • 대한치과보철학회지
    • /
    • 제33권3호
    • /
    • pp.584-609
    • /
    • 1995
  • The purpose of this study was to evaluate the difference of the galvanic corrosion behaviour of the titanium in contact with gold alloy, silva-palladium alloy, and nickel-chromium alloy using the immersion and electrochemical method. And the effects of galvallit couples between titanium and the dental alloys were assessed for their usefulness as materials for superstructure. The immersion method was performed by measuring the amount of metal elementsreleased by Inductivey coupled plasma emission spectroscopy(ICPES) The specimen of fifteen titanium plates, the five gold alloy, five silver-palladium, five nickel-chromium plates, and twenty acrylic resin plates ware fabricated, and also the specimen of sixty titanium plugs, the thirty gold alloy, thirty silver-palladium, and nickelc-hromium plugs were made. Thereafter, each plug of gold alloy, silver-palladium, and nickel-chromium inserted into the the titanium and acrylic resin plate, and also titanium plug inserted into the acrylic resin plate. The combination specimens uf galvanic couples immersed in 70m1 artificial saliva solution, and also specimens of four type alloy(that is, titanium, gold, silver-palladium and nickel-chromium alloy) plugs were immersed solely in 70m1 artificial sativa solution. The amount of metal elements released was observed during 21 weeks in the interval of each seven week. The electrochemical method was performed using computer-controlled potentiosta(Autostat 251. Sycopel Sicentific Ltd., U.K). The wax patterns(diameter 11.0mm, thickness,in 1.5mm) of four dental casting alloys were casted by centrifugal method and embedded in self-curing acrylic resin to be about $1.0cm^2$ of exposed surface area. Embedded specimens were polished with silicone carbide paper to #2,000, and ultrasonically cleaned. The working electrode is the specimen of four dental casting alloys, the reference electrode is a saturated calmel electrode(SCE) and the ounter electrode is made of platinum plate. In the artificial saliva solution, the potential scanning was carried out starting from-700mV(SCE) TO +1,000mV(SCE) and the scan rate was 75mV/min. Each polarization curve of alloy was recorded automatically on a logrithmic graphic paper by XY recorder. From the polarization curves of each galvanic couple, corrosion potential and corrosion rates, that is, corrosion density were compared and order of corrosion tendency was determined. From the experiments, the following results were obtained : 1. In the case of immersing titanium, gold alloy, silver-palladium alloy, and nickel-chromium alloysolely in the artificial saliva solution(group 1, 2, 3, and 4), the total amount of metal elements released was that group 4 was greater about 2, 3 times than group 3, and about 7.8 times than group 2. In the case of group 1, the amount of titanium released was not found after 8 week(p<0.001). 2. In the case of galvanic couples of titanium in contact with alloy(group 5, 6), the total amount of metal elements released of group 5 and 6 was less than that of group 7, 8, 9, and 10(p<0.05). 3. In the case of galvanic couples of titanium in contact with silver-palladium alloy(group 7, 8), the total amount of metal elements released of group 7 was greater about twice than that of group 5, and that of group 8 was about 14 times than that of group 6(p<0.05). 4. In the case of galvanic couples of titanium in contact with nickel-chromium alloy(group 9, 10), the total amount of metal elements released of group 9 and 10 was greater about 1.8-3.2 times than that of group 7 and 8, and was greater about 4.3~25 times than that of group 5 and 6(p<0.05). 5. In the effect of galvanic corrosion according to the difference of the area ratio of cathode and anode, the total amount of metal elements released was that group 5 was greater about 4 times than group 6, group 8 was greater about twice than group 7, and group 10 was greater about 1.5 times than group 9(p<0.05). 6. In the effect of galvanic corrosion according to the elasped time during 21 week in the interval of each 7 week, the amount of metal elements released was decreased markedly in the case of galvanic couples of the titanium in contact with gold alloy and silver-palladium alloy but the total amount of nickel and beryllium released was not decreased markedly in the case of galvanic couples of the titanium in contact with nickel-chromium alloy(p<0.05). 7. In the case of galvanic couples of titanium in contact with gold alloy, galvanic current was lower than any other galvanic couple. 8. In the case of galvanic couples of titanium in contact with nickel-chromium alloy, galvanic current was highest among other galvanic couples.

  • PDF

치관보철물(齒冠補綴物) 제작(製作)에 사용(使用)되는 Nickel-Chromium계(系) 합금(合金)의 치경부(齒頸部) 변록(邊綠)에 관(關)한 적합성(適合性) (The Margin Fit of Nickel-Chromium Metal Alloys used for the Production of Crown and Bridge Prosthetics)

  • 이인규;최운재
    • 대한치과기공학회지
    • /
    • 제13권1호
    • /
    • pp.9-13
    • /
    • 1991
  • The purpose of this study was to determine the marginal fit of recasting by used nickel-chromium metal alloys, Hi-Crown, New-Crown and CB-80. Ninety crown prosthetics were divided into eighteen groups according to new to old metal ratios. Each crown was seated on its master die and then the marginal gaps were measured under optical microscope($\times$50). All groups were showed good marginal fit, except group 3 of Hi-Crown(156$\mu$m). The results suggest that the marginal fit of Ni-Cr metal alloy casting bodies were good as without concerned to mixed ratios and metals.

  • PDF

원심 주조한 니켈-크롬 합금의 성량 변화 및 주조 온도에 따른 산화물 측정 (Composition of nickel-chromium alloy on the centrifugal casting and the influence of quantitative of oxides on the casting temperature)

  • 김원수
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.361-368
    • /
    • 2012
  • Purpose: The aim of this study was to analysis the composition on the centrifugal casting and the oxide on the casting temperature. Methods: The nickel based alloy were used in this study. Wax pattern specimens (10*10*2) were invested with phosphate-bonded investment in metal rings, the liquid/powder ratio and overall burn-out schedules for these investments were followed in accordance with the manufacturer's instructions. After casting, the alloy specimens were evaluated as regards composition(EPMA). The casting temperatures were as follows: $1400^{\circ}C$ and $1700^{\circ}C$. The quantitative analysis of oxides were scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and line scanning. Results: Nearer the injection lines showed that there is a large amount of nickel. Quantitative of oxides of Ni-Cr alloy cast from $1400^{\circ}C$ is lager than Ni-Cr alloy cast from $1700^{\circ}C$. Conclusion: Casting when using a centrifugal casting machine centrifugal force affects the composition of the alloy. The higher the temperature, the amount of oxide that is generated many.

치과용 니켈-크롬합금에 대한 표면 처리가 인장접착강도에 미치는 영향 (THE EFFECTS OF SURFACE TREATMENT OF DENIAL NICKEL-CHROMIUM ALLOY ON TENSILE BOND STRENGTH)

  • 이은숙;권오원
    • 대한치과교정학회지
    • /
    • 제27권3호
    • /
    • pp.493-502
    • /
    • 1997
  • 본 연구에서는 치과용 니켈-크롬합금의 표면에 전처리없이 치과용 브라켓을 Super-bond로 접착한 대조군과 샌드블라스팅 및 tin-plating을 각각 혹은 병용으로 표면처리후 Super-bond로 접착한 실험각군의 인장접착강도, 브라켓 탈락양상 및 주사전자현미경 소견을 비교하여 임상적용 가능성을 알아보고자 하였으며 다음과 같은 결과를 얻었다. 1. 인장장접착강도는 니켈-크롬합금의 표면에 샌드블라스팅 처리후 Super-bond로 브라켓을 접착한 실험 I군이 $14.41{\pm}2.24MPa$로 가장 높았고, tin-plating처리후 Super-bond로 접착한 실험 III군이 $13.59{\pm}1.51MPa$, 샌드블라스팅후 tin-lating처리를 하고 Super-bond로 접착한 실험 II군이 $12.27{\pm}1.45MPa$, 특정한 표면처리 없이 Super-bond로 접착한 대조군이 $10.50{\pm}1.57MPa$로 가장 낮게 나타났으나 실험 I군과 실험 III군간, 실험 III군과 실험 II군간, 실험 II군과 대조군간에는 유의한 차이가 없었다(p>0.05). 2. 브라켓의 주된 탈락양상은 대조군의 경우 $70\%$가 브라켓과 접착제 계면에서 adhesive failure를, $30\%$가 니켈-크롬합금과 접착제 계면에서 adhesive failure를 나타내었고, 실험 각군은 모두 브라켓과 접착제 계면에서 adhesivefailure 를 나타내었다. 3. 주사전자현미경 소견에서 대조군의 경우 일부 레진이 브라켓 기저면에 부착되어 나타났으나 실험 각군에서는 거의 대부분의 레진이 니켈-크롬합금면에 부착되어 관찰되었고, 샌드블라스팅만 시행한 시편면이 가장 균일하고 조밀한 표면 요철상을 나타내었다.

  • PDF

치과용 합금의 표면 처리가 글라스아이오노머 시멘트와 폴리카르복실레이트 시멘트의 결합력에 미치는 영향 (INFLUENCE OF SURFACE TREATMENTS OF DENIAL ALLOYS ON BOND STRENGTH OF GLASS IONOMER AND POLYCARBOXYLATE CEMENT)

  • 이헌우;우이형;임호남;최부병
    • 대한치과보철학회지
    • /
    • 제34권1호
    • /
    • pp.125-142
    • /
    • 1996
  • Bond strength of four different cements to dental casting alloys which were treated with #600 emery, tin-plating, and $50{\mu}m$ sandblasting were evaluated. The alloy specimens were Type III Gold alloy(Degulor C), Palladium-Silver alloy(Pors on 4), Nickel-Chromium(Rexillium III) alloy, which were embedded in acrylic resin disc. The specimens were treated with #600 emery and tin plating, #600 emery and sandblasting, then bonded using Fuji I, Ketac Cem(Glass ionomer cements), Poly F, Livcarbo(Polycarboxylate cements). The specimens were immersed in water for 24 hours and shear bond strengths were evaluated by Instron Machine. Tin plated, sandblasted, and debonded alloy surfaces were observed using scanning electron microscope. On the basis of this study, the following conclusions could be drawn. 1. In the tin plated alloy group, increase in bond strength of glass ionomer cements was statistically insignificant. 2. In the tin plated alloy group, increase in bond strength of polycarboxylate cements was statistically significant, except nickel-chromium alloy. 3. Sandblasted alloy group showed higher bond strength than that of tin-plated alloy group.

  • PDF

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.

소환온도(燒還溫度)와 재(再) 주조금속(鑄造金屬) 함량비(含量比)가 Ni-Cr계(係) 비귀금속(非貴金屬) 합금(合金)의 가주성(可鑄性)에 미치는 영향 (The Influence on Castability of Nickel-Chromium Alloys according to Burn-out Temperature and Recast Content Ratio)

  • 이효병
    • 대한치과기공학회지
    • /
    • 제8권1호
    • /
    • pp.51-55
    • /
    • 1986
  • The castability of base metal alloys for dental casting in influenced by burn-out temperature and recent percentage. Burn-out temperatures for casting are set at 200$^{\circ}F$ interval from 1000$^{\circ}F$ to 1800$^{\circ}F$. According to recast metal percent in new cast alloy metal alloys are tested. The results are as followings: 1. In the new alloy(100%), the castability is the most. 2. The burn-out temperature in 1600$\sim$1800$^{\circ}F$, castability of 100% new alloy was more four times than of 50% new alloy plus 50% recast alloy. The using of 50% new alloy and 50% recast alloy, therefore, was unlike in castability. 3. The burn-out temperature in 1600$^{\circ}F$, castability of 100% new alloy was more than four times in soaking 20 minutes, but there was no any difference at 18700$^{\circ}F$. 4. It is investigated that the optimal burn-out temperature is 1600$^{\circ}F$ for the C & B alloy.

  • PDF