• Title/Summary/Keyword: Dental morphology

Search Result 433, Processing Time 0.031 seconds

Identification of venular capillary remodelling: a possible link to the development of periodontitis?

  • Townsend, David
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.65-76
    • /
    • 2022
  • Purpose: The present study measured changes in arteriolar and venular capillary flow and structure in the gingival tissues during the development of plaque-induced gingival inflammation by combining dynamic optical coherence tomography (OCT), laser perfusion, and capillaroscopic video imaging. Methods: Gingival inflammation was induced in 21 healthy volunteers over a 3-week period. Gingival blood flow and capillary morphology were measured by dynamic OCT, laser perfusion imaging, and capillaroscopy, including a baseline assessment of capillary glycocalyx thickness. Venular capillary flow was estimated by analysis of the perfusion images and mean blood velocity/acceleration in the capillaroscopic images. Readings were recorded at baseline and weekly over the 3 weeks of plaque accumulation and 2 weeks after brushing was resumed. Results: Perfusion imaging demonstrated a significant reduction of gingival blood flow after 1 and 2 weeks of plaque accumulation (P<0.05), but by 3 weeks of plaque accumulation there was a more mixed picture, with reduced flow in some participants and increased flow in others. Participants with reduced flux at 3 weeks also demonstrated venular-type flow as determined by perfusion images and evidence of the development of venular capillaries as assessed by the velocity/acceleration ratio in capillaroscopic images. After brushing resumed, these venular capillaries were broken down and replaced by arteriolar capillaries. Conclusions: After 3 weeks of plaque accumulation, there was wide variation in microvascular reactions between the participants. Reduced capillary flow was associated with the development of venular capillaries in some individuals. This is noteworthy, as an early increase in venous capillaries is a key vascular feature of cardiovascular disease, psoriasis, Sjögren syndrome, and rheumatoid arthritis-diseases with a significant association with the development of severe gingival inflammation, which leads to periodontitis. Future investigations of microvascular changes in gingival inflammation might benefit from accurate capillary flow velocity measurements to assess the development of venular capillaries.

Comparative analysis of torsional and cyclic fatigue resistance of ProGlider, WaveOne Gold Glider, and TruNatomy Glider in simulated curved canal

  • Pedro de Souza Dias;Augusto Shoji Kato;Carlos Eduardo da Silveira Bueno;Rodrigo Ricci Vivan;Marco Antonio Hungaro Duarte ;Pedro Henrique Souza Calefi ;Rina Andrea Pelegrine
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.4.1-4.10
    • /
    • 2023
  • Objectives: This study aimed to compare the torsional and cyclic fatigue resistance of ProGlider (PG), WaveOne Gold Glider (WGG), and TruNatomy Glider (TNG). Materials and Methods: A total of 15 instruments of each glide path system (n = 15) were used for each test. A custom-made device simulating an angle of 90° and a radius of 5 millimeters was used to assess cyclic fatigue resistance, with calculation of number of cycles to failure. Torsional fatigue resistance was assessed by maximum torque and angle of rotation. Fractured instruments were examined by scanning electron microscopy (SEM). Data were analyzed with Shapiro-Wilk and Kruskal-Wallis tests, and the significance level was set at 5%. Results: The WGG group showed greater cyclic fatigue resistance than the PG and TNG groups (p < 0.05). In the torsional fatigue test, the TNG group showed a higher angle of rotation, followed by the PG and WGG groups (p < 0.05). The TNG group was superior to the PG group in torsional resistance (p < 0.05). SEM analysis revealed ductile morphology, typical of the 2 fracture modes: cyclic fatigue and torsional fatigue. Conclusions: Reciprocating WGG instruments showed greater cyclic fatigue resistance, while TNG instruments were better in torsional fatigue resistance. The significance of these findings lies in the identification of the instruments' clinical applicability to guide the choice of the most appropriate instrument and enable the clinician to provide a more predictable glide path preparation.

Rodent peri-implantitis models: a systematic review and meta-analysis of morphological changes

  • Ren Jie Jacob Chew;Jacinta Xiaotong Lu;Yu Fan Sim;Alvin Boon Keng Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.479-495
    • /
    • 2022
  • Purpose: Rodent models have emerged as an alternative to established larger animal models for peri-implantitis research. However, the construct validity of rodent models is controversial due to a lack of consensus regarding their histological, morphological, and biochemical characteristics. This systematic review sought to validate rodent models by characterizing their morphological changes, particularly marginal bone loss (MBL), a hallmark of peri-implantitis. Methods: This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A literature search was performed electronically using MEDLINE (PubMed), and Embase, identifying pre-clinical studies reporting MBL after experimental peri-implantitis induction in rodents. Each study's risk of bias was assessed using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk of bias tool. A meta-analysis was performed for the difference in MBL, comparing healthy implants to those with experimental peri-implantitis. Results: Of the 1,014 unique records retrieved, 23 studies that met the eligibility criteria were included. Peri-implantitis was induced using 4 methods: ligatures, lipopolysaccharide, microbial infection, and titanium particles. Studies presented high to unclear risks of bias. During the osseointegration phase, 11.6% and 6.4%-11.3% of implants inserted in mice and rats, respectively, had failed to osseointegrate. Twelve studies were included in the meta-analysis of the linear MBL measured using micro-computed tomography. Following experimental peri-implantitis, the MBL was estimated to be 0.25 mm (95% confidence interval [CI], 0.14-0.36 mm) in mice and 0.26 mm (95% CI, 0.19-0.34 mm) in rats. The resulting peri-implant MBL was circumferential, consisting of supra- and infrabony components. Conclusions: Experimental peri-implantitis in rodent models results in circumferential MBL, with morphology consistent with the clinical presentation of peri-implantitis. While rodent models are promising, there is still a need to further characterize their healing potentials, standardize experiment protocols, and improve the reporting of results and methodology.

Joint Space Analysis Using Cone-beam Computed Tomography Imaging in Patients Diagnosed with Temporomandibular Joint Osteoarthritis and Occlusal Changes

  • Hyun-Jeong Park;Yo-Seob Seo;Jong-Won Kim;Sun-Kyoung Yu;Ji-Won Ryu
    • Journal of Oral Medicine and Pain
    • /
    • v.48 no.4
    • /
    • pp.152-158
    • /
    • 2023
  • Purpose: This pilot study aimed to evaluate changes in joint space (JS) using cone-beam computed tomography (CBCT) images of patients diagnosed with temporomandibular joint (TMJ) osteoarthritis (OA) and to determine the association between occlusal changes and JS. Methods: CBCT images were used to measure the anterior, superior, and posterior JSs of the sagittal plane. The differences in JS values over time and between groups were compared. The percentage change in the anteroposterior position of the mandibular condyle between groups was also analyzed. Results: Thirty-four subjects (mean age=43.91±20.13), comprising eight males (23.5%) and 26 females (76.5%), were divided into 18 patients with no change in occlusion (NCO) and 16 patients with a change in occlusion (CO) during TMJ OA. The JS measurements of the study subjects showed a decrease in anterior joint space (AJS) values over time. There was no difference in JS measurements between the groups at T1 and T2. AJS values measured at T1 were lower in the CO group than in the NCO group, but the difference was not statistically significant. In both groups, a posterior position of the mandibular condyle was initially observed with high frequency. However, there is a statistically significant difference in CBCT images taken after occlusal changes, with an increased frequency of condyles observed in the anterior or central positions. Conclusions: In conclusion, AJS decreased over time in TMJ OA, and the mandibular condyle became more anteriorly positioned with occlusal changes. Therefore, clinicians should diligently monitor mandibular condyle morphology and JS using CBCT, along with the patient's clinical symptoms, to treat and control TMJ OA effectively.

Development of Zinc-Doped Titanium Dioxide Coatings with Enhanced Biocompatibility for Biomedical Application

  • Minseo Yu;Yo Han Song;Mi-Kyung Han
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.377-386
    • /
    • 2024
  • The surface of titanium (Ti) dental implants was modified by applying a zinc (Zn)-doped titanium dioxide (TiO2) coating. Initially, the Ti surfaces were etched with NaOH, followed by a hydrolysis co-condensation using tetrabutyl titanate (TBT, Ti(OC4H9)4) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O), with ammonia water (NH3·H2O) acting as a hydroxide anion source. The morphology and chemical composition of the Zn-doped TiO2-coated Ti plates were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and scanning electron microscopy (SEM). Synthesis temperatures were carefully adjusted to produce anatase Zn-doped TiO2 nanoparticles with a bipyramidal structure and approximate sizes of 100 nm. Wettability tests and cell viability assays demonstrated the biomedical potential of these modified surfaces, which showed high biocompatibility with a survival rate of over 95 % (p < 0.05) and improved wettability. Corrosion resistance tests using potentiodynamic polarization reveal that Zn-TiO2-treated samples with an anatase crystal structure exhibited a lower corrosion current density and more noble corrosion potential compared to samples coated with a rutile structure. This method offers a scalable approach that could be adapted by the biomaterial industry to improve the functionality and longevity of various biomedical implants.

The correlation between dental compensation and craniofacial morphology in skeletal Class III malocclusion (골격성 III급 부정교합자의 치성보상과 두개안면골격의 상관관계에 관한 연구)

  • Jeon, Young-Jin;Park, Su-Byung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.27 no.2
    • /
    • pp.209-219
    • /
    • 1997
  • This investigation was designed to analyze the degree of dental compensation according to horizontal components of craniofacial skeleton and to investigate correlation between dental compensation and craniofacial pattern in skeletal class III malocclusion. The material selected for this study consisted of standard lateral cephalogram of 59 subjects in normal occlusion group, 91 subjects in mild skeletal class III malocclusion group and 58 subjects in severe skeletal class III malocclusion group. The mild skeletal class III malocclusion group was divided into two groups, one was class III malocclusion without anterior crossbite group and the other was class III malocclusion with anterior crossbite group. The data were analyzed by Quick-ceph image program. The results were as follows. 1. Mild skeletal class III malocclusion without anterior crossbite group showed the most labial inclination of upper incisors, followed by severe skeletal class III malocclusion group and mild skeletal class III malocclusion with anterior crossbite group, the Latter showing the least. The amount of lingual inclination of lower incisors was the largest in severe skeletal class III malocclusion group, and there was no statistically significant difference between mild skeletal claw III malocclusion without anterior crossbite group and mild skeletal class III malocclusion with anterior crossbite group. 2. There were little differences in vertical skeletal structure between mild skeletal class III malocclusion without anterior crossbite group and mild skeletal class III malocclusion with anterior cwssbite group, they showed statistically significant differences in the upper incisors measurements. 3. The measurements of lower incisors in mild skeletal class III malocclusion without anterior crossbite group and upper incisors in mild skeletal class III malocclusion with anterior crossbite group represented a high correlation with skeletal structure. Especially, ∠IMPA and ∠FMIA of lower incisor measurements, and ∠U1-FH ∠U1-SN of upper incisor measurements showed high correlation with skeletal structure in each group. 4. ∠IMPA and ∠FMIA of lower incisor measurements showed high correlation with skeletal structure in all groups. ∠U1-FH, ∠U1-SN and U1-facial plane(mm) of upper incisor measurements represented higher correlation with skeletal structure than any other upper incisor measurements.

  • PDF

Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study (지르코니아 표면에 부착된 바이오필름에 대한 LED 치솔의 항균효과)

  • Park, Jong Hew;Kim, Yong-Gun;Um, Heung-Sik;Lee, Si Young;Lee, Jae-Kwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.160-169
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the antimicrobial effects of a toothbrush with light-emitting diodes (LEDs) on periodontitis-associated dental biofilm attached to a zirconia surface by static and dynamic methods. Materials and Methods: Zirconia disks (12 mm diameter, 2.5 mm thickness) were inserted into a 24-well plate (static method) or inside a Center for Disease Control and Prevention (CDC) biofilm reactor (dynamic method) to form dental biofilms using Streptococcus gordonii and Fusobacterium nucleatum. The disks with biofilm were subdivided into five treatment groups-control, commercial photodynamic therapy (PDT), toothbrush alone (B), brush with LED (BL), and brush with LED+erythrosine (BLE). After treatment, the disks were agitated to detach the bacteria, and the resulting solutions were spread directly on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy (SEM) was performed to visualize alterations in bacterial morphology. Results: No significant difference in biofilm formation was observed between dynamic and static methods. A significant difference was observed in the number of viable bacteria between the control and all experimental groups (P < 0.05). The percentage of bacterial reduction in the BLE group was significantly higher than in the other treated groups (P < 0.05). SEM revealed damaged bacterial cell walls in the PDT, BL, and BLE groups, but intact cell walls in the control and B groups. Conclusion: The findings suggest that an LED toothbrush with erythrosine is more effective than other treatments in reducing the viability of periodontitis-associated bacteria attached to zirconia in vitro.

Changes of symphysis morphology after chincup treatment (이모장치 착용 후 하악 이부의 헝태변화)

  • Kang, Sun;Park, Dong-Cheol;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.30 no.1 s.78
    • /
    • pp.33-41
    • /
    • 2000
  • Although it is well known that the chincup, used to correct a skeletal class III malocclusion in growing children, reduce the mandibular prognathism by arresting the growth of the mandibular length and rotating the mandible posteroinferiorly, the majority of the studies about chincup is focused on condylar head that plays an Important role in mandibular growth. The aim of this study was to evaluate the morphologic change of the mandibular symphysis where extraoral force is applied directly during chincup treatment. The data lot this study were obtained from lateral cephalometric radiographs of 62 growing children(chincup group:32, control group:30) with mixed dentition who had been accepted lot the orthodontic treatment at Chonbuk National University Dental Hospital. The results were as follows : 1. Symphysis height was increased both in chincup therapy group and control group during treatment. Symphysis depth was decreased or maintained the initial values in chin cup therapy group, whereas increased in control group. Posterior symphysis depth was decreased both in chin cup therapy group and control group, but anterior svmphysis detph was increased in control group, whereas decreased in chincup therapy group. 2. Chin depth and chin curvature were increased in control group, whereas maintained or decreased in chincup therapy group during treatment. Chin angle, menton ang1e and symphysis angle were decreased in control group, whereas increased in chincup therapy group. It suggested that bone deposition in pogonion area that occur normally with mandibular growth was supressed by direct contact of chincup. 3. When growing children wear chincup, symphysis morphology was maintained due to inhibition of forward growth at mandibular symphysis. It may be due to the suppression of bone deposition in anterior part of symphysis.

  • PDF

The biofilm removal effect of MnO2-diatom microbubbler from the dental prosthetic surfaces: In vitro study (치과 보철 재료 표면에서 MnO2-diatom microbubbler의 세균막 제거 효과 연구: In vitro study)

  • Lee, Eun-Hyuk;Seo, Yongbeom;Kwon, Ho-Bum;Yim, Young-Jun;Kong, Hyunjoon;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.1
    • /
    • pp.14-22
    • /
    • 2020
  • Purpose: The aim of this study is to evaluate the effectiveness of MnO2-diatom microbubbler (DM) on the surface of prosthetic materials as a mouthwash by comparing the biofilm removal effect with those previously used as a mouthwash in dental clinic. Materials and methods: DM was fabricated by doping manganese dioxide nanosheets to the diatom cylinder surface. Scanning electron microscopy (SEM) was used to observe the morphology of DM and to analyze the composition of doped MnO2. Stereomicroscope was used to observe the reaction of DM in 3% hydrogen peroxide. Non-precious metal alloys, zirconia and resin specimens were prepared to evaluate the effect of biofilm removal on the surface of prosthetic materials. And then Streptococcus mutans and Porphyromonas gingivalis biofilms were formed on the specimens. When 3% hydrogen peroxide solution and DM were treated on the biofilms, the decontamination effect was compared with chlorhexidine gluconate and 3% hydrogen peroxide solution by crystal violet staining. Results: Manganese dioxide was found on the surface of the diatom cylinder, and it was found to produce bubble of oxygen gas when added to 3% hydrogen peroxide. For all materials used in the experiments, biofilms of the DM-treated groups got effectively removed compared to the groups used with chlorhexidine gluconate or 3% hydrogen peroxide alone. Conclusion: MnO2-diatom microbubbler can remove bacterial membranes on the surface of prosthetic materials more effectively than conventional mouthwashes.

The effect of Ca-P coatings of anodized implant surface on response of osteoblast-like cells in vitro (임플란트 표면의 Ca-P 코팅 방법이 MG63 골모유사세포 반응에 미치는 영향에 대한 in vitro 연구)

  • Kim, Il-Yeon;Jung, Sung-Min;Hwang, Soon-Jung;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.376-384
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the response of osteoblast-like cells to Ca-P coated surface obtained via Ion beam-assisted deposition (IBAD) method and Sol-Gel process on anodized surface by cellular proliferation and differentiation. Material and methods: The surface of a commercially pure titanium (Grade IV) discs with dimension of 10mm diameter and 2 mm thickness was modified by anodic oxidation under a constant voltage of 300 V. The experimental groups were coated with Ca-P by the IBAD method and Sol-Gel process on anodized surface. The surface roughness (Ra) of specimens was measured by optical interferometer and each surface was examined by SEM. To evaluate cell response, MG63 cells were cultured and cell proliferation, ALP activity and the ability of cell differentiation were examined. Also, cell morphology was examined by SEM. The significant of each group was verified by Kruskal-Wallis Test ($\alpha$=.05). Results: The Ra value of Ca-P coated surface by IBAD method was significantly higher than Ca-P coated surface by Sol-gel process (P < .05). The level of cell proliferation and ALP activity was higher in Ca-P coated surface by IBAD method (P<.05). The expression of ALP showed higher level expression in Ca-P coated surface by IBAD method. Cells grown on Ca-P coated surface by IBAD method were uniformly distributed and developed a very close layer. Conclusion: These experiments showed better performances of Ca-P coated surface by IBAD method with respect to Ca-P coated surface by Sol-gel process. Ca-P coated surface by IBAD method appear to give rise more mature osteoblast characteristics and might result in increased bone growth and bone-implant contact.