• Title/Summary/Keyword: Dental curing lights

Search Result 15, Processing Time 0.02 seconds

Errors in light-emitting diodes positioning when curing bulk fill and incremental composites: impact on properties after aging

  • Abdulrahman A. Balhaddad;Isadora M. Garcia;Haifa Maktabi;Maria Salem Ibrahim;Qoot Alkhubaizi;Howard Strassler;Fabricio M. Collares;Mary Anne S. Melo
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.51.1-51.13
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. Materials and Methods: Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. Results: For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01). Conclusions: The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

Effects of plasma arc curing lights on the surface hardness of the composite resins (플라즈마 광중합기가 복합레진 중합에 미치는 영향)

  • Lee, Soo-Won;Yang, Kyu-Ho;Kim, Seon-Mi;Choi, Nam-Ki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.624-632
    • /
    • 2006
  • In recent years, xenon plasma arc lamp was introduced for high-intensity curing of composite filling materials in direct resin restorations. In this study, two types of restorative materials, namely composites point $4^{(R)}$ and $Z250^{(R)}$ were selected and curing was conducted using a conventional halogen light and two plama curing lights. Two different resin composites were cured using the different units($Flipo^{(R)}$, Ultra-lite 180A, and $TriLight^{(R)}$) and tested for microhardness. The purpose of this study was to test the hypothesis that exposure to a plasma curing lamp for 3, 6. 9 seconds is equivalent to 20 or 40 seconds of irradiation using a conventional halogen curing unit. 1. $Flipo^{(R)}$ and Ultra-lite 180A were able to polymerize point $4^{(R)}$ at 6 seconds to a degree equal to that of the $TriLight^{(R)}$(control) at 40 seconds. 2. $Flipo^{(R)}$ was able to polymerize $Z250^{(R)}$ at 9 seconds to a degree equal to that of the $TriLight^{(R)}$(control) on the bottom surface at 20 seconds. whereas Ultra-lite 180A could not do. 3. Two plasma curing units were able to cure the test-composites with bottom/top ratios approximately 61% to 96% at 3 to 9 seconds. There were some differences between the two composite brands, with $Z250^{(R)}$ displaying less difference between top and bottom hardness values. For point $4^{(R)}$ and $Z250^{(R)}$, at least 6 or 9 seconds were necessary to produce microhardness equivalent to that of the $TriLight^{(R)}$ curing at 20 or 40 seconds.

  • PDF

Optimum Treatment Parameters for Photodynamic Antimicrobial Chemotherapy on Streptococcus mutans Biofilms (Streptococcus mutans biofilm에 대한 광역동 치료의 최적조건에 관한 연구)

  • Choi, Seojung;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.2
    • /
    • pp.151-157
    • /
    • 2015
  • The purpose of this study was to evaluate the effects of Photochemotherapy using a combination of erythrosine and standard halogen dental curing lights on the viability of Streptococcus mutans in the biofilm phase. To investigate the optimum treatment parameters, the researchers controlled the concentration of erythrosine, light irradiation time and the treatment time of erythrosine. The higher concentration of erythrosine (0, 10, 20, 40, 80 M) in the presence of light irradiation created greater effects in reducing the viability of S. mutans. The results showed a statistically significant difference among the antimicrobial effects in 20, 40, 80 M erythrosine. The higher irradiation time of light (0, 5, 15, 30, 60, 75s) in the presence of erythrosine showed greater effects in reducing the viability of S. mutans. There was statistically significant difference in 30, 60, 75 seconds. The higher treatment time of erythrosine (0, 1, 2.5, 5min) in the presence of erythrosine created greater effects on reduction of S. mutans viability. Statistically significant differences were found between 2.5 and 5 minutes of erythrosine treatment time. The results of this study showed that the photochemotherapy on S. mutans using erythrosine and the halogen dental curing lights conventionally used in dental clinics is effective in the condition of 20-40 M erythrosine concentration, irradiation time over 30 seconds, and erythrosine treatment time over 2.5 minutes.

The effect of irradiation mode on degree of cure, shrinkage and microleakage of composite resin restoration.

  • Park, Jong-Jin;Park, Jeong-Won;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.558.2-558
    • /
    • 2001
  • The aims of this study are (1) to investigate the relation of irradiation mode, polymerization shrinkage and degree of cure of composite resin and(2) it effect on micorleakage of class V restorations. VIP(BISCO Dental Products, Schaumburg, IL, USA) and Optilux 501 (Demetron/Kerr, Danbury, CT, USA) curing lights were used for curing Z-250 composite resin following irradiation mode: VIP 200㎽d, VIP 400㎽, VIP 600㎽, pulse-delay(200㎽ 3sec, 5min wait, 600㎽ 30sec), Optilux R mode.(omitted)

  • PDF

The effect of irradiation mode on degree of cure, shrinkage and microleakage of composite resin restroation.

  • Park, Jong-Jin;Park, Jeong-Won;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.555-555
    • /
    • 2001
  • The aims of this study are (1) to investigate the relation of irradiation mode, polymerzition shrinkage and degree of cure of composite resin and (2) it effect on microliakage of calss V restorations. VIP(BISCO Dental Products, Schaumburg, IL, USA) and Optilux 501(Demetron/Kerr, Danbury, CT, USA) curing lights were used for curing Z-250 composite resin following irradiation mode: VIP 200㎽, VIP 400㎽, VIP 600㎽, pulse-delay(200㎽ 3sec, 5min wait, 600㎽ 30sec), Optilux C mode, Optilux R mode.(omitted)

  • PDF

A CLINICAL STUDY ON THE MAINTENANCE OF LIGHT INTENSITY OF VISIBLE-LIGHT CURING MACHINES FOR THE POLYMERIZATION OF COMPOSITE RESINS (복합레진 중합용 가시광선 광중합기의 적정 광강도 유지를 위한 임상적 고찰)

  • Lee, Dong-Soo;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.363-368
    • /
    • 2001
  • It is well known that numerous factors influence the light output of curing units, but many dentists are un aware that the output of their curing lights are inadequate. This study was conducted to evaluate the light in tensity of visible-light curing units in some private dental clinics and hospital dental clinics. In order to determine the maximum light intensity of the curing units, lamps, filters and fiber optic bundles, they were replaced with new ones and light intensity was remeasured. Light intensity was measured by employing a digital radiometer (EFOS model #8000, USA). Light intensity ranged in $29\sim866mW/cm^2$ (below $150mW/cm^2$ ; 17.8%, $150\sim300mW/cm^2$ : 46.6%, above $300mW/cm^2$ ; 35.6%). The replacement of the components increased the light intensity, with maximum increases of 94.8% for lamps, 82.3% for filters, 200.8% for fiber optics and 361.5% for all three parts. According to the manufacturer of radiometer, curing light is considered as unsuitable for use with a reading of above $300mW/cm^2$ by the radiometer. Applying these criteria to the present study, 64.4% of the curing units required repair or replacement. The results of this study indicated that the light intensities of the curing units used in dental practice were lower than optimum level.

  • PDF

AN IN VITRO STUDY OF MICROLEAKAGE OF COMPOSITE RESINS (복합레진의 미세누출에 관한 연구)

  • Lee, Sun-Young;Yang, Yeon-Mi;Baik, Byeong-Ju;Jeon, Cheol-Wan;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.593-599
    • /
    • 2003
  • The purposes of this study were to evaluate the microleakage of class V composite resin restorations utilizing the different curing lights, to assess the flowable resin, $Filtek^{TM}Flow$(3M Dental Products, USA) and composite resin, $Filtek^{TM}Z250$(3M Dental Products, USA) which need 20s curing time for halogen light could replace $Z100^{TM}$ Restorative(3M Dental Products, USA) for the microleakage, and to evaluate the effect of adhesive resin on marginal microleakage. Light curing units used in this study were conventional halogen light, XL3000(3M Dental Products, USA) and plasma arc light, Flipo(Lokki, France). Class V cavities were prepared and each cavity was filled with each composite resin. After being filled, the teeth were stored in distilled water, polished, thermocycled and soaked in 1% methylene blue solution. Following results were obtained from evaluation of the sectioned surface. 1. There was no statistically significant difference in microleakage of $Filtek^{TM}Flow$ and $Filk^{TM}Z250$ between two kinds of curing units(p>0.05). 2. Flowable resin, $Filtek^{TM}Flow$ showed more microleakage than Z100 and $Filtek^{TM}Z250$ regardless of curing units(p<0.05). 3. Adhesive resin reduced the microleakage of composite resin in both halogen light and plasma arc light(p<0.05).

  • PDF

Power density of light curing units through resin inlays fabricated with direct and indirect composites (직접수복용 레진과 기공용 레진으로 제작한 레진 인레이를 투과한 광중합기의 광강도)

  • Chang, Hoon-Sang;Lim, Young-Jun;Kim, Jeong-Mi;Hong, Sung-Ok
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.353-358
    • /
    • 2010
  • Objectives: The purpose of this study was to measure the power density of light curing units transmitted through resin inlays fabricated with direct composite (Filtek Z350, Filtek Supreme XT) and indirect composite (Sinfony). Materials and Methods: A3 shade of Z350, A3B and A3E shades of Supreme XT, and A3, E3, and T1 shades of Sinfony were used to fabricate the resin inlays in 1.5 mm thickness. The power density of a halogen light curing unit (Optilux 360) and an LED light curing unit (Elipar S10) through the fabricated resin inlays was measured with a hand held dental radiometer (Cure Rite). To investigate the effect of each composite layer consisting the resin inlays on light transmission, resin specimens of each shade were fabricated in 0.5 mm thickness and power density was measured through the resin specimens. Results: The power density through the resin inlays was lowest with the Z350 A3, followed by Supreme XT A3B and A3E. The power density was highest with Sinfony A3, E3, and T1 (p < 0.05). The power density through 0.5 mm thick resin specimens was lowest with dentin shades, Sinfony A3, Z350 A3, Supreme XT A3B, followed by enamel shades, Supreme XT A3E and Sinfony E3. The power density was highest with translucent shade, Sinfony T1 (p < 0.05). Conclusions: Using indirect lab composites with dentin, enamel, and translucent shades rather than direct composites with one or two shades could be advantageous in transmitting curing lights through resin inlays.

MARGINAL LEAKAGE OF COMPOSITE RESIN AND COMPOMER RESTORATIONS CURED WITH THREE DIFFERENT LIGHT SOURCES (광중합기 종류에 따른 복합레진과 콤포머의 미세누출에 관한 연구)

  • Park, Chang-Hoo;Yang, Kyu-Ho;Kim, Seon-Mi;Choi, Nam-Ki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.438-446
    • /
    • 2006
  • The purpose of this study was to evaluate the microleakage of composite resin($Z250^{(R)}$) and compomer(Dyract AP) cured with various curing lights(Elipar $TriLight^{(R)}$, $Flipo^{(R)}$, and Elipar FreeLight $2^{(R)}$). Box-shaped class V cavities were prepared on the buccal and lingual surfaces of extracted human third molars. The sectioned specimens were evaluated for dye penetration and following results were obtained. 1. Regarding microleakage in the enamel margin with different curing light sources, there was no significant difference in Dyract AP whereas $Z250^{(R)}$ with $Flipo^{(R)}$ showed higher microleakage score than those of FreeLight $2^{(R)}$ or $TriLight^{(R)}$(p<0.05). 2. Regarding microleakage in the dentin margin with curing light sources, there were no significant differences in both Dyract AP and $Z250^{(R)}$(p>0.05). 3. Regarding microleakage in the enamel margin with filling materials. there were no significant differences in both filling materials with $Flipo^{(R)}$ whereas $Z250^{(R)}$ showed less microleakage than Dyract AP with FreeLight $2^{(R)}$ or $TriLight^{(R)}$ (p<0.05). 4. Regarding microleakage in the dentin margin with filling materials, there wer no significant differences in both filling materials with $TriLight^{(R)}$ whereas $Z250^{(R)}$ showed less microleakage than Dyract AP with FreeLight $2^{(R)}$ or $Flipo^{(R)}$ (p<0.05). 5. Enamel margin showed less microleakage than dentin margin when filled with Dyract AP and cured with $Flipo^{(R)}$ or FreeLight $2^{(R)}$ (p<0.05), but there were no statistically significant differences between the enamel and the dentin in the rest groups. This study suggested that $Z250^{(R)}$ showed lower microleakage score than Dyract AP. and that $Flipo^{(R)}$ showed higher microleakage score than FreeLight $2^{(R)}$ and $TriLight^{(R)}$ in the enamel margin filled with $Z250^{(R)}$.

  • PDF

Light transmittance of CAD/CAM ceramics with different shades and thicknesses and microhardness of the underlying light-cured resin cement

  • Jafari, Zahra;Alaghehmand, Homayoon;Samani, Yasaman;Mahdian, Mina;Khafri, Soraya
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2018
  • Objectives: The aim of this in vitro study was to evaluate the effects of the thickness and shade of 3 types of computer-aided design/computer-aided manufacturing (CAD/CAM) materials. Materials and Methods: A total of 120 specimens of 2 shades (A1 and A3) and 2 thicknesses (1 and 2 mm) were fabricated using VITA Mark II (VM; VITA Zahnfabrik), IPS e.max CAD (IE; IvoclarVivadent), and VITA Suprinity (VS; VITA Zahnfabrik) (n = 10 per subgroup). The amount of light transmission through the ceramic specimens was measured by a radiometer (Optilux, Kerr). Light-cured resin cement samples (Choice 2, Bisco) were fabricated in a Teflon mold and activated through the various ceramics with different shades and thicknesses using an LED unit (Bluephase, IvoclarVivadent). In the control group, the resin cement sample was directly light-cured without any ceramic. Vickers microhardness indentations were made on the resin surfaces (KoopaPazhoohesh) after 24 hours of dark storage in a $37^{\circ}C$ incubator. Data were analyzed using analysis of variance followed by the Tukey post hoc test (${\alpha}=0.05$). Results: Ceramic thickness and shade had significant effects on light transmission and the microhardness of all specimens (p < 0.05). The mean values of light transmittance and microhardness of the resin cement in the VM group were significantly higher than those observed in the IE and VS groups. The lowest microhardness was observed in the VS group, due to the lowest level of light transmission (p < 0.05). Conclusion: Greater thickness and darker shades of the 3 types of CAD/CAM ceramics significantly decreased the microhardness of the underlying resin cement.