DOI QR코드

DOI QR Code

Power density of light curing units through resin inlays fabricated with direct and indirect composites

직접수복용 레진과 기공용 레진으로 제작한 레진 인레이를 투과한 광중합기의 광강도

  • Chang, Hoon-Sang (Department of Conservative Dentistry, Wonkwang University College of Dentistry and Dental Research Institute) ;
  • Lim, Young-Jun (Dental Laboratory, Wonkwang University Dental Hospital) ;
  • Kim, Jeong-Mi (Dental Laboratory, Wonkwang University Dental Hospital) ;
  • Hong, Sung-Ok (Department of Conservative Dentistry, Wonkwang University College of Dentistry and Dental Research Institute)
  • 장훈상 (원광대학교 치과대학 치과보존학교실, 원광치의학연구소) ;
  • 임영준 (원광대학교 치과대학 치과보존학교실, 원광치의학연구소) ;
  • 김정미 (원광대학교 치과대학병원 중앙기공실) ;
  • 홍성옥 (원광대학교 치과대학 치과보존학교실, 원광치의학연구소)
  • Received : 2010.07.22
  • Accepted : 2010.08.10
  • Published : 2010.09.30

Abstract

Objectives: The purpose of this study was to measure the power density of light curing units transmitted through resin inlays fabricated with direct composite (Filtek Z350, Filtek Supreme XT) and indirect composite (Sinfony). Materials and Methods: A3 shade of Z350, A3B and A3E shades of Supreme XT, and A3, E3, and T1 shades of Sinfony were used to fabricate the resin inlays in 1.5 mm thickness. The power density of a halogen light curing unit (Optilux 360) and an LED light curing unit (Elipar S10) through the fabricated resin inlays was measured with a hand held dental radiometer (Cure Rite). To investigate the effect of each composite layer consisting the resin inlays on light transmission, resin specimens of each shade were fabricated in 0.5 mm thickness and power density was measured through the resin specimens. Results: The power density through the resin inlays was lowest with the Z350 A3, followed by Supreme XT A3B and A3E. The power density was highest with Sinfony A3, E3, and T1 (p < 0.05). The power density through 0.5 mm thick resin specimens was lowest with dentin shades, Sinfony A3, Z350 A3, Supreme XT A3B, followed by enamel shades, Supreme XT A3E and Sinfony E3. The power density was highest with translucent shade, Sinfony T1 (p < 0.05). Conclusions: Using indirect lab composites with dentin, enamel, and translucent shades rather than direct composites with one or two shades could be advantageous in transmitting curing lights through resin inlays.

연구목적: 본 연구는 직접수복용 레진 (Filtek Z350, Supreme XT)과 기공용 레진 (Sinfony)으로 제작한 레진 인레이를 투과하는 광중합기의 광강도를 측정하고 레진 인레이를 구성하는 색조에 따라 투과되는 광강도를 측정하였다. 연구 재료 및 방법: A3 색조의 레진 인레이를 Z350 A3 한 가지 색조로 제작한 것과 Supreme XT A3B와 A3E 두 가지 색조로 제작한 것을 이용하였으며 Sinfony는 제조사의 지시에 따라 A3, E3, T1 세 가지 색조로 제작하였고 두께는 1.5 mm로 통일하였다. 할로겐 광중합기 (Optilux 360)와 LED 광중합기 (Elipar S10)를 이용하여 레진 인레이를 투과하는 광강도를 휴대용 광강도 측정기 (Cure Rite)로 측정하였다. 각 레진의 색조가 광강도의 투과에 미치는 영향을 분석하기 위해 0.5mm 두께로 레진 시편을 제작하여 광강도를 측정하였다. 결과: Z350 A3로 제작한 레진 인레이를 투과한 광강도가 가장 낮았으며, 다음으로 Supreme XT A3B와 A3E로 제작한 레진 인레이, 그리고 Sinfony A3, E3, T1으로 제작한 레진 인레이 순으로 광강도가 유의하게 증가하였다 (p < 0.05). 0.5mm의 레진 시편을 투과한 광강도를 측정한 결과 dentin shade인 Sinfony A3, Z350 A3, Supreme XT A3B가 가장 낮았으며, enamel shade인 Supreme XT A3E, Sinfony E3, 그리고 translucent shade인 Sinfony T1 순으로 유의하게 증가하였다 (p < 0.05). 결론: 레진 인레이를 제작할 경우 단색의 직접 수복용 레진을 사용하기 보다는 기공용 레진의 dentin shade, enamel shade, translucent shade를 모두 사용하는 것이 레진 인레이 하방으로 더 많은 중합광을 투과시킬 수 있는 것으로 사료된다.

Keywords

References

  1. Kramer N, Lohbauer U, Frankenberger R. Adhesive luting of indirect restorations. Am J Dent 2000;13 (Spec No):60D-76D.
  2. McLean JW. The science and art of dental ceramics. Oper Dent 1991;16:149-156.
  3. Touati B, Aidan N. Second generation laboratory composite resins for indirect restorations. J Esthet Dent 1997;9:108-118. https://doi.org/10.1111/j.1708-8240.1997.tb00928.x
  4. Cesar PF, Miranda WG, Jr., Braga RR. Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations. J Prosthet Dent 2001;86:289-296. https://doi.org/10.1067/mpr.2001.114513
  5. Soares CJ, Pizi EC, Fonseca RB, Martins LR. Mechanical properties of light-cured composites polymerized with several additional post-curing methods. Oper Dent 2005;30:389-394.
  6. Borba M, Della Bona A, Cecchetti D. Flexural strength and hardness of direct and indirect composites. Braz Oral Res 2009;23:5-10. https://doi.org/10.1590/S1806-83242009000100002
  7. el-Mowafy O. The use of resin cements in restorative dentistry to overcome retention problems. J Can Dent Assoc 2001;67:97-102.
  8. Sorensen JA, Kang SK, Avera SP. Porcelain-composite interface microleakage with various porcelain surface treatments. Dent Mater 1991;7:118-123. https://doi.org/10.1016/0109-5641(91)90057-6
  9. Jensen ME, Sheth JJ, Tolliver D. Etched-porcelain resin-bonded full-veneer crowns: in vitro fracture resistance. Compendium 1989;10:336-8,40-41,44-47.
  10. el-Badrawy WA, el-Mowafy OM. Chemical versus dual curing of resin inlay cements. J Prosthet Dent 1995; 73:515-524. https://doi.org/10.1016/S0022-3913(05)80109-X
  11. Hasegawa EA, Boyer DB, Chan DC. Hardening of dual-cured cements under composite resin inlays. J Prosthet Dent 1991;66:187-192. https://doi.org/10.1016/S0022-3913(05)80046-0
  12. Rueggeberg FA, Jordan DM. Effect of light-tip distance on polymerization of resin composite. Int J Prosthodont 1993;6:364-370.
  13. Prati C, Chersoni S, Montebugnoli L, Montanari G. Effect of air, dentin and resin-based composite thickness on light intensity reduction. Am J Dent 1999;12: 231-234.
  14. Fan PL, Schumacher RM, Azzolin K, Geary R, Eichmiller FC. Curing-light intensity and depth of cure of resin-based composites tested according to international standards. J Am Dent Assoc 2002;133:429-434. https://doi.org/10.14219/jada.archive.2002.0200
  15. Na JS, Jeong SW, Hwang YC, Kim SH, Yun C, Oh WM, et al. Effect of light source and shade on depth of cure of composites. J Kor Acad Cons Dent 2002;27: 561-568. https://doi.org/10.5395/JKACD.2002.27.6.561
  16. Park JJ, Park JW, Park SH, Park JM, Kwon TK, Kim SK. The effect of irradiation modes on polymerization and microleakage of composite resin. J Kor Acad Cons Dent 2002;27:158-174. https://doi.org/10.5395/JKACD.2002.27.2.158
  17. Shin HJ, Kim JW, Cho KM. Polymerization ability of several light curing sources on composite resin. J Kor Acad Cons Dent 2003;28:156-161. https://doi.org/10.5395/JKACD.2003.28.2.156
  18. McCabe JF, Carrick TE. Output from visible-light activation units and depth of cure of light-activated composites. J Dent Res 1989;68:1534-1539. https://doi.org/10.1177/00220345890680111301
  19. Shortall AC. How light source and product shade influence cure depth for a contemporary composite. J Oral Rehabil 2005;32:906-911. https://doi.org/10.1111/j.1365-2842.2005.01523.x
  20. Campbell PM, Johnston WM, O'Brien WJ. Light scattering and gloss of an experimental quartz-filled composite. J Dent Res 1986;65:892-894. https://doi.org/10.1177/00220345860650060501
  21. Ruyter IE, Oysaed H. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand 1982;40:179-192. https://doi.org/10.3109/00016358209012726
  22. dos Santos GB, Alto RV, Filho HR, da Silva EM, Fellows CE. Light transmission on dental resin composites. Dent Mater 2008;24:571-576. https://doi.org/10.1016/j.dental.2007.06.015

Cited by

  1. Effects of layering technique on the shade of resin overlays and the microhardness of dual cure resin cement vol.28, pp.1, 2014, https://doi.org/10.1590/1807-3107BOR-2014.vol28.0016
  2. Power density of various light curing units through resin inlays with modified layer thickness vol.37, pp.3, 2012, https://doi.org/10.5395/rde.2012.37.3.130
  3. Light curing of dual cure resin cement vol.38, pp.4, 2013, https://doi.org/10.5395/rde.2013.38.4.266