• Title/Summary/Keyword: Dental biofilms

Search Result 50, Processing Time 0.02 seconds

New Approaches to the Control of Pathogenic Oral Bacteria (바이오필름을 생성하는 병원성 구강 세균을 제어하는 새로운 접근법)

  • Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.100-108
    • /
    • 2021
  • In the oral cavity, there are hundreds of microbial species that exist as planktonic cells or are incorporated into biofilms. The accumulation and proliferation of pathogenic bacteria in the oral biofilm can lead to caries and periodontitis, which are typical oral diseases. The oral bacteria in the biofilm not only can resist environmental stress inside the oral cavity, but also have a 1,000 times higher resistance to antibiotics than planktonic cells by genes exchange through the interaction between cells in the oral biofilm. Therefore, if the formation of oral biofilm is suppressed or removed, oral diseases caused by bacterial infection can be more effectively prevented or treated. In particular, since oral biofilms have the characteristic of forming a biofilm by gathering several bacteria, quorum sensing, a signaling system between cells, can be a target for controlling the oral biofilm. In addition, a method of inhibiting biofilm formation by using arginine, an alkali-producing substrate of oral bacteria, is used to convert the distribution of oral microorganisms into an environment similar to that of healthy teeth or inhibit the secretion of glucosyltransferase by S. mutans to inhibit the formation of non-soluble glucans. It can be a target to control oral biofilm. This method of inhibiting or removing the oral biofilm formation rather than inducing the death of pathogenic bacteria in the oral cavity will be a new strategy that can selectively prevent or therapeutic avenues for oral diseases including dental caries.

Analysis of fungal hyphae, distribution and motility of bacteria in oral cavity according to halitosis (구취에 따른 구강 내 형태별 세균의 분포 및 운동성, 진균 균사 분석)

  • Kim, Do Kyeong;Byeon, You-Kyeong;Choi, Hyun-Ji;Lee, Ga-Ram;Choi, Yu-Ri;Choi, Yu-Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.6 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Halitosis is primarily caused by bacterial decay. The bacteria, which originate from biofilms such as dental plaque, show abnormal proliferation due to dental caries, periodontal diseases, soft tissue infections, and tongue diseases. Most studies on halitosis have exclusively focused on gram-negative bacteria in the oral cavity rather than on general oral microorganisms including oral fungi. This study analyzed oral fungal hyphae, as well as distribution and motility of oral microorganisms, and provided basic data on the control of halitosis. Our results revealed that the greater is the number of cocci bacteria, the higher is the halitosis value, or bad breath value (BBV), suggesting that cocci have a strongly positive correlation with halitosis (r=0.379, p=0.030). Moreover, there was no significant difference in the morphology or distribution of motile bacteria and motility score, with respect to BBV. Lastly, we investigated the relationship between halitosis and oral fungal hyphae. We found that a higher BBV corresponded with a greater number of fungal hyphae and that patients with fungal hyphae scored a higher BBV. However, this result was not statistically significant. In conclusion, this study provided the preliminary data on oral microorganisms and halitosis, but further studies are needed to analyze the relationship between oral microorganisms and halitosis.

Comparison of oral care product use, frequency of dental clinic visits, and oral conditions between individuals who brush and do not brush before sleeping using the 5th and 6th Korean National Health and Nutrition Survey (KNHANES) data (잠자기 전 칫솔질 유무에 따른 구강위생보조용품 사용과 최근 치과진료 및 구강상태 비교 : 국민건강영양조사 제5기와 제6기의 자료를 활용하여)

  • Kim, Yu-Rin
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.6
    • /
    • pp.931-939
    • /
    • 2019
  • Objectives: The purpose of this study was to determine the importance of brushing before sleeping by comparing the use of oral care products, frequency of dental clinic visits, and oral conditions between individuals who brush and do not brush their teeth before sleeping using data from the 5th and 6th Korean National Health and Nutrition Survey (KNHANES). Methods: Statistical analysis was performed using SPSS 21.0 on data files obtained according to a complex sampling design, and a significance level of <0.05 was set. General characteristics of the participants and year were analyzed using chi-square analysis. Data on the oral conditions, use of oral care products, and frequency of dental clinic visits were analyzed using logistic regression and linear regression. Results: Individuals who brushed their teeth before sleeping showed greater use of oral care products and more frequent dental clinic visits, oral examinations, preventive treatment, and treatment for simple caries (p<0.05) than individuals who did not. Individuals who did not brush their teeth before sleeping showed higher prevalence of permanent teeth caries and periodontal disease, as well as chewing and speaking problems (p<0.05), than those who bushed before sleeping. Conclusions: Individuals who do not brush before sleeping exhibit poorer oral health and lower use of oral care products and frequency of recent dental treatment than those who brush before sleeping. Therefore, it is necessary to alter the government's active policy and improve education about the importance of brushing before sleeping to improve oral health.

The Microbial Contamination and Effective Control Method of Dental Unit Water System (치과용 유니트 수계의 미생물 오염 및 효과적인 관리 방법)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.383-392
    • /
    • 2015
  • Dental chair unit (DCU) is the most essential equipment for the dental treatment in dentistry. DCU output water is used for various applications during dental treatment. DCU output water must be clean at the same level as drinking water since patients and dental staff are regularly exposed to water and aerosols generated from the DCU. Many studies demonstrated that DCU output water is frequently contaminated with microorganisms including opportunistic pathogen such as Legionella and Pseudomonas species. Thus, DCU output water may be a potential source of infection. In order to reduce microbial contamination levels in DCU output water, periodic management and continuous disinfection are necessary. Currently, there are a variety of disinfection methods for managing DCU output water and its efficacy is also diverse. We reviewed the level of microbial contamination, clinical implications of contaminated DCU output water and the various DCU disinfection methods.

Oral Pathogens and Their Antibiotics from Marine Organisms: A Systematic Review of New Drugs for Novel Drug Targets

  • Sehyeok Im;Jun Hyuck Lee;Youn-Soo Shim
    • Journal of dental hygiene science
    • /
    • v.24 no.2
    • /
    • pp.84-96
    • /
    • 2024
  • Background: Recent studies have elucidated the quorum-sensing mechanisms, biofilm formation, inter-pathogen interactions, and genes related to oral pathogens. This review aims to explore the recent expansion of drug targets against oral pathogens and summarize the current research on novel antibiotic substances derived from marine organisms that target oral pathogens. Methods: A comprehensive literature review summarized the novel mechanisms pertaining to quorum-sensing signal transmission systems, biofilm formation, and metabolite exchange in oral pathogens. The amino acid sequences of the 16 proteins identified as potential drug targets were systematically classified and compared across various oral microorganisms. Results: Through a literature review, we identified nine studies researching quorum sensing signaling inhibitors targeting oral pathogens. A comparison of the amino acid sequences of 16 potential drug targets in oral microorganisms revealed significant differences between oral pathogens and beneficial oral symbiotic microorganisms. These findings imply that it is possible to design drugs that can bind more selectively to oral pathogens. Conclusion: By summarizing the results of recent research on the signaling mechanisms that cause pathogenicity, new drug targets against oral pathogens were proposed. Additionally, the current status of developing new antibiotics for oral pathogens using recently developed quorum sensing inhibitors and natural products derived from marine organisms was introduced. Consequently, marine natural products can be used to develop drugs targeting new proteins in oral pathogens.

Chelating and antibacterial properties of chitosan nanoparticles on dentin

  • del Carpio-Perochena, Aldo;Bramante, Clovis Monteiro;Duarte, Marco Antonio Hungaro;de Moura, Marcia Regina;Aouada, Fauze Ahmad;Kishen, Anil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.195-201
    • /
    • 2015
  • Objectives: The use of chitosan nanoparticles (CNPs) in endodontics is of interest due to their antibiofilm properties. This study was to investigate the ability of bioactive CNPs to remove the smear layer and inhibit bacterial recolonization on dentin. Materials and Methods: One hundred bovine dentin sections were divided into five groups (n = 20 per group) according to the treatment. The irrigating solutions used were 2.5% sodium hypochlorite (NaOCl) for 20 min, 17% ethylenediaminetetraacetic acid (EDTA) for 3 min and 1.29 mg/mL CNPs for 3 min. The samples were irrigated with either distilled water (control), NaOCl, NaOCl-EDTA, NaOCl-EDTA-CNPs or NaOCl-CNPs. After the treatment, half of the samples (n = 50) were used to assess the chelating effect of the solutions using portable scanning electronic microscopy, while the other half (n = 50) were infected intra-orally to examine the post-treatment bacterial biofilm forming capacity. The biovolume and cellular viability of the biofilms were analysed under confocal laser scanning microscopy. The Kappa test was performed for examiner calibration, and the non-parametric Kruskal-Wallis and Dunn tests (p < 0.05) were used for comparisons among the groups. Results: The smear layer was significantly reduced in all of the groups except the control and NaOCl groups (p < 0.05). The CNPs-treated samples were able to resist biofilm formation significantly better than other treatment groups (p < 0.05). Conclusions: CNPs could be used as a final irrigant during root canal treatment with the dual benefit of removing the smear layer and inhibiting bacterial recolonization on root dentin.

Clean effect of a cetylpyridinium chloride-based mouthwash on removable orthodontic appliances (염화세틸피리디늄 계열 구강세정제의 가철성 교정장치에 대한 세정효과)

  • Da-Seul Ha;Kyung-Hee Lee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.227-234
    • /
    • 2023
  • Objectives: Cetylpyridinium chloride CPC-based mouthwashes are well known to have no harmful ingredients in the mouth and can be used for a long time. The purpose of this study was to evaluate the effect of using CPC-based mouthwashes to suppress the biofilm formation and antibiotics for handling orthodontic appliances. Methods: To measure the antibacterial effect, Streptococcus mutans (S. mutans) cultured orthodontic appliances were precipitated in Gargreen and Polident for 5 minutes, incubated at 37℃ for 24 hours(h). In order to measure the biofilm removal effect, the degree of biofilm formation on the orthodontic appliances was stained with a methylene blue and the difference before and after was compared using image J software program (NIH Image J; NIH, Bethesda, MD). Results: The viability of S. mutans according to the concentration showed that Gargreen and Polident inhibited colony formation compared to the control, respectively (p<0.01). The degree of biofilm formation was significantly higher in the control, however both Gargreen and Polident significantly reduced it compared to the before and after condition on removable orthodontic appliances (p<0.01). Conclusions: This study suggests that the use of Gargreen, a cetylpyridinium chloride based oral cleaning cleanser, could be replaced by Polident for antibacterial effect and biofilm formation on removable orthodontic appliances.

The Effect of Erythrosine-mediated Photodynamic Therapy on Intraorally Formed Biofilm on Titanium Surface

  • Park, Se-Hwan;Lee, Si-Young;Chang, Beom-Seok;Um, Heung-Sik;Lee, Jae-Kwan
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.103-108
    • /
    • 2012
  • The purpose of this study was to assess the efficacy of photodynamic therapy (PDT) using erythrosine and a halogen light source to treat a biofilm formed on a machined surface titanium disk in vivo. Ten volunteers carried an acrylic appliance containing six machined surface titanium disks on the upper jaw over a period of five days. After the five days of biofilm formation period, the disks were removed. PDT using 20 ${\mu}M$ erythrosine and halogen light was then applied to the biofilms formed on the disks. Experimental samples were divided into a negative control group (no erythrosine and no irradiation), E0 group (erythrosine 60s + no irradiation), E30 group (erythrosine 60s + halogen light 30s), and E60 group (erythrosine 60s + halogen light 60s). Following PDT, the bacteria in the biofilm were found to be detached from each disk. Each suspension with detached bacteria were diluted and cultivated on a blood-agar plate for five days under anaerobic conditions. The cultivated bacterial counts in the E60 group were significantly lower than the control group (86.4%) or E0 group (76.7%). In the experimental groups also, the light exposure time and bacterial counts showed a negative correlation. In conclusion, PDT using erythrosine and halogen light has bactericidal effects on biofilms formed on a titanium disk in vivo. Notably, applying 20 ${\mu}M$ erythrosine and 60 seconds of halogen light irradiation had a significantly potent effect.

Intraoral ageing of aligners and attachments: Adverse effects on clinical efficiency and release of biologically-active compounds

  • Theodore Eliades;George Eliades
    • The korean journal of orthodontics
    • /
    • v.54 no.4
    • /
    • pp.199-209
    • /
    • 2024
  • The clinical application of aligners is accompanied by the ageing of the polymer appliances and the attachments used, which may result in inefficiency in reaching the predicted range of tooth movement, and release of compounds and microplastics in the oral cavity as a result of the friction, wear and attrition of the aligner and composite attachment. The purpose of this review is to present the mechanism and effects of in vivo ageing; describe the hydrolytic degradation of aligners and enzymatic degradation of composite attachments; examine the ageing pattern of aligners in vivo, under actual clinical scenarios; and identify a link to the discrepancy between predicted and actual clinical outcome. Lastly, strategies to deal with three potentially critical issues associated with the use of aligners, namely the necessity of weekly renewal, the dissimilar mechanical properties of aligner and attachment resulting in wear and plastic deformation of the aligner, and the development of integuments and biofilms with microbial colonization of the appliance, are discussed.

Effect of the Ethanol Extract of Propolis on Formation of Streptococcus mutans Biofilm

  • Park, Bog-Im;Jung, Yeon-Woo;Kim, Young-Hoi;Lee, Sang-Moo;Kwon, Lee-Seong;Kim, Kang-Ju;An, So-Youn;Choi, Na-Young;You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.253-262
    • /
    • 2016
  • Streptococcus mutans (S. mutans) is one of the most important bacteria in the formation of dental plaque and dental caries. S. mutans adheres to an acquired pellicle formed on the tooth surface, and aggregates with many oral bacteria. It initiates plaque formation by synthesizing glucan from sucrose, which is catalyzed by glucosyltransferases. Propolis is a resinous mixture produced by honeybees, by mixing saliva and beeswax with secretions gathered from wood sap and flower pollen. Bees prevent pathogenic invasions by coating the propolis to the outer and inner surface of the honeycomb. Propolis has traditionally been used for the treatment of allergic rhinitis, asthma and dermatitis. We investigated the inhibitory effects of propolis ethanol extract on biofilm formation and gene expression of S. mutans. The biofilm formation of S. mutans was determined by scanning electron microscopy (SEM) and safranin staining. We observed that the extract of propolis had an inhibitory effect on the formation of S. mutans biofilms at concentrations higher than 0.2 mg/ml. Real-time PCR analysis showed that the gene expression of biofilm formation, such as gbpB, spaP, brpA, relA and vicR of S. mutans, was significantly decreased in a dose dependent manner. The ethanol extract of propolis showed concentration dependent growth inhibition of S. mutans, and significant inhibition of acid production at concentrations of 0.025, 0.05, 0.1 and 0.2 mg/ml, compared to the control group. These results suggest that the ethanol extract of propolis inhibits gene expression related to biofilm formation in S. mutans.