• Title/Summary/Keyword: Dental Engineering

Search Result 1,045, Processing Time 0.032 seconds

Inhibitory effect of n-hexane extract from Korean red ginseng marc against Streptococcus mutans causing dental caries (홍삼박 n-hexane 추출물의 충치를 유발하는 Streptococcus mutans 저해 효과)

  • Kim, Dong Chung;In, Man-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.357-362
    • /
    • 2021
  • In this study, to investigate the anticariogenic effect of red ginseng, the antibacterial effect, cell adherence and biofilm formation inhibitory effect of n-hexane extract of red ginseng marc (HERGM) against Streptococcus mutans, the causative bacteria of caries, were measured. The growth of S. mutans was inhibited in proportion to the concentration of HERGM, and was hardly observed at a concentration above 125 ㎍/mL (MIC =125 ㎍/mL). It was found that HERGM acts on the cell membrane and the nucleic acid component of the cell was leaked. In addition, HERGM inhibited the adherence and biofilm formation of S. mutans by more than 90% at a concentration of 125 ㎍/mL. GTase activity was completely inhibited at a concentration of 50 ㎍/mL of HERGM. In conclusion, it was found that HERGM commonly inhibited the growth and biofilm formation of S. mutans.

Effects of different surface treatments on the shear bond strength of veneering ceramic materials to zirconia

  • Abdullah, Adil Othman;Hui, Yu;Sun, Xudong;Pollington, Sarah;Muhammed, Fenik Kaml;Liu, Yi
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.65-74
    • /
    • 2019
  • PURPOSE. To evaluate and compare the effect of different materials and techniques on the shear bond strength of veneering ceramic materials to zirconia. MATERIALS AND METHODS. 136 sintered zirconia cubes were prepared and randomly divided into four study groups according to corresponding methods of surface treatment and materials: GLN (grinding followed by laser scanning using Noritake Cerabien ZR), SLN (sandblasting followed by laser scanning using Noritake Cerabien ZR), GLV (grinding followed by laser scanning using VITA VM 9), and SLV (sandblasting followed by laser scanning using VITA VM 9). Spraying technique was performed to coat the core. Profilometer, SEM, XRD, EDS, universal testing machine, and stereomicroscope were used to record surface roughness Ra, surface morphology, phase transformation, elemental compositions, shear bond strength SBS values, and failure types, respectively. Specimens were investigated in unaged (not immersed in artificial saliva) and aged (stored in artificial saliva for a month) conditions to evaluate SBS values. RESULTS. Grinding and GLN as first and second surface treatments provided satisfactory Ra values in both conditions ($1.05{\pm}0.24{\mu}m$, $1.30{\pm}0.21{\mu}m$) compared to sandblasting and other groups (P<.05). The group GLN showed the highest SBS values in both conditions ($30.97{\pm}3.12MPa$, $29.09{\pm}4.17MPa$), while group SLV recorded the lowest ($23.96{\pm}3.60MPa$, $22.95{\pm}3.68Mpa$) (P<.05). Sandblasting showed phase transformation from t-m. Mixed failure type was the commonest among all groups. CONCLUSION. GLN showed to be a reliable method which provided satisfactory bond strength between the veneer ceramic and zirconia. This method might preserve the integrity of fixed dental crowns.

Analysis of Mechanical Properties of Polymer Material for Clear Aligner using Uniaxial Tensile Test (일축인장시험을 통한 투명교정장치용 고분자 소재의 역학적 특성 분석)

  • Jeong, Ji-Young;Je, Tae-Jin;Jeon, Eun-chae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.64-69
    • /
    • 2018
  • Clear aligners are popular in the field of dental orthodontic treatment because they offer a discreet alternative to braces due to their use of transparent materials. They are formed from flat transparent polymer materials by hot pressed molding. It is necessary to know the mechanical properties of the polymer materials to be able to form the exact shapes of the clear aligners. However, this information is not publicly available. In this study, we present a method to reliably measure the mechanical properties of clear aligner polymer materials and analyze the factors effecting these mechanical properties. First, we surveyed standards related to the mechanical properties of polymer materials to obtain reliable data. Consequently, ISO 527 was selected for use in this study because of the size and thickness of the flat transparent polymer material. The uniaxial tensile tester was constructed and it was verified whether displacement of a crosshead could be regarded as a displacement of gauge-length by optical analysis. Uniaxial tensile tests of three thicknesses from three different companies were performed and each engineering stress-strain curve was measured. Tensile strengths and elastic moduli were obtained by analysis of the stress-strain curves. The tensile strength and elastic modulus of ISO 527 was found to be approximately 50MPa and 2.3GPa, respectively. Both values showed material and thickness dependency.

Clinical Management and Micro-Computed Tomography Analysis of Supernumerary Teeth in Infancy: A Case Report (영유아기 과잉치의 임상적 처치 및 micro-computed tomography 분석: 증례 보고)

  • Chaehyun, Na;Hana, Lee;Hansung, Kim;Jihun, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.3
    • /
    • pp.348-356
    • /
    • 2022
  • Supernumerary teeth develop from excessive proliferation and development of the dental lamina. Supernumerary teeth can cause several problems, including ectopic eruption, delayed eruption, root resorption of adjacent teeth, and diastema. Supernumerary teeth in infancy are rare and have rarely been reported. Case of a 2-day-old infant with 3 supernumerary teeth is presented here and the patient was followed up for 21 months. The erupted supernumerary tooth in the primary dentition was extracted under moderate sedation at the age of 14 months. Microcomputed tomography analysis of the extracted tooth confirmed microscopic root malformation. After extraction, the midline diastema was reduced and oral hygiene improved. Early diagnosis and prompt treatment can prevent complications of supernumerary teeth.

A Study on the History of the Korean Medical Device Industry and its Global Competitiveness (한국 의료기기 산업의 역사와 국제 경쟁력 고찰)

  • Yeom, Hojun;Jeong, Hyun-Woo;Park, Sangsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • Korean medical device industry has laid the foundation for full-fledged growth and development with the G7 medical engineering technology development project that started in 1995, and the medical device production in 2020 increased by 8.52 times and the export by 13.94 times, compared to those in 2001. In early years, electronic medical devices such as ultrasound imaging device contributed greatly to Korean medical industry, but top ranks in medical device production and export in Korea has shifted recently to in vitro diagnostic medical devices and dental implants. However, the share of imported medical devices in the Korean medical device market have not changed much; it still ranges in 60 to 70%, as the Korean medical device industry produces and exports mid- to low-priced medical devices, and technology-intensive and capital-intensive high-priced medical devices are mainly imported. In this paper, we compare the leading medical devices produced by major Korean companies and those by global top medical device companies to suggest strategies for the Korean medical device companies to enter the global market.

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder (하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진)

  • Yu Hyeon Yun;Jong Kook Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.337-343
    • /
    • 2023
  • 3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

Biomineralization of three calcium silicate-based cements after implantation in rat subcutaneous tissue

  • Ranjdar Mahmood Talabani;Balkees Taha Garib;Reza Masaeli;Kavosh Zandsalimi;Farinaz Ketabat
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the dystrophic mineralization deposits from 3 calcium silicate-based cements (Micro-Mega mineral trioxide aggregate [MM-MTA], Biodentine [BD], and EndoSequence Root Repair Material [ESRRM] putty) over time after subcutaneous implantation into rats. Materials and Methods: Forty-five silicon tubes containing the tested materials and 15 empty tubes (serving as a control group) were subcutaneously implanted into the backs of 15 Wistar rats. At 1, 4, and 8 weeks after implantation, the animals were euthanized (n = 5 animals/group), and the silicon tubes were removed with the surrounding tissues. Histopathological tissue sections were stained with von Kossa stain to assess mineralization. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDX) were also used to assess the chemical components of the surface precipitates deposited on the implant and the pattern of calcium and phosphorus distribution at the material-tissue interface. The calcium-to-phosphorus ratios were compared using the non-parametric Kruskal-Wallis test at a significance level of 5%. Results: The von Kossa staining showed that both BD and ESRRM putty induced mineralization starting at week 1; this mineralization increased further until the end of the study. In contrast, MM-MTA induced dystrophic calcification later, from 4 weeks onward. SEM/EDX showed no statistically significant differences in the calcium- and phosphorus-rich areas among the 3 materials at any time point (p > 0.05). Conclusions: After subcutaneous implantation, biomineralization of the 3-calcium silicate-based cements started early and increased over time, and all 3 tested cements generated calcium- and phosphorus-containing surface precipitates.

Testing and evaluation of the corrosion behavior of Aluminum/Alumina bulk composites fabricated via combined stir casting and APB process

  • Abdalkareem Jasim;Ghassan Fadhil Smaisim;Abduladheem Turki Jalil;Surendar Aravindhan;Abdullah Hasan Jabbar;Shaymaa Abed Hussein;Muneam Hussein Ali;Muataz S. Alhassan;Yasser Fakri Mustafa
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.263-271
    • /
    • 2023
  • In this study, AA1060/Alumina composites were fabricated by combined stir casting and accumulative press bonding (APB). The APB process was repeated up to six press bonding steps at 300Ċ. As the novelty, potential dynamic polarization in 3.5Wt% NaCl solution was used to study the corrosion properties of these composites. The corrosion behavior of these samples was compared and studied with that of the annealed aluminum alloy 1060 and versus the number of APB steps. So, as a result of enhancing influence on the number of APB process, this experimental investigation showed a significant enhancement in the main electrochemical parameters and the inert character of the Alumina particles. Together with Reducing the active zones of the material surfaces could delay the corrosion process. Also, at higher number of steps, the corrosion resistance of composites improved. The sample produced after six number of steps had a low corrosion density in comparison with high corrosion density of annealed specimens. Also, the scanning electron microscopy (SEM), was used to study the corrosion surface of samples.

Investigation of Nanofiber and Thermosensitive Scaffold for Intervertebral Disc through Organ Culture (기관배양을 통한 추간판 재생용 나노파이버 및 온도 감응성 지지체에 대한 검증)

  • Lee, Yong-Jae;Shin, Ji-Won;Shin, Ho-Jun;Kim, Chan-Hwan;Park, Ki-Dong;Bae, Jin-Woo;Seo, Hyoung-Yeon;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.512-519
    • /
    • 2007
  • The purpose of this study is to investigate the potential of a novel tissue engineering approach to regenerate intervertebral disc. In this study, thermosensitive scaffold (chitosan-Pluronic hydrogel) and nanofiber were used to replace the nucleus pulposus (NP) and annulus fibrosus of a degenerated intervertebral disc, leading to an eventual regeneration of the disc using the minimally invasive surgical procedure and organ culture. In preliminary study, disc cells were seeded into the scaffolds and cellular responses were assessed by MTT assay and scanning electron microscopy (SEM). Based on these results, we could know that tissue engineered scaffolds might provide favorable environments for the regeneration of tissues. Organ culture was performed in fresh porcine spinal motion segments with endplates on both sides. These spinal motion segments were classified into three groups: control (Intact), injured NP (Defect), and inserting tissue engineered scaffolds (Insert). The specimens were cultivated for 7 days, subsequently structural stability, cell proliferation and morphological changes were evaluated by the relaxation time, quantity of DNA, GAG and histological examination. In these results, inserting group showed higher relaxation time, reduced decrement of DNA contents, and accumulated GAG amount. Consequently, the tissue engineered scaffolds used in this study seen to be a promising base scaffolds for regenerative intervertebral disc due to its capacity to absorb external dynamic loading and the possible ideal environment provided for disc cell growing.

Efficacy of glycine powder air-polishing in supportive periodontal therapy: a systematic review and meta-analysis

  • Zhu, Mengyuan;Zhao, Meilin;Hu, Bo;Wang, Yunji;Li, Yao;Song, Jinlin
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.3
    • /
    • pp.147-162
    • /
    • 2021
  • Purpose: This systematic review and meta-analysis was conducted to assess the effects of glycine powder air-polishing (GPAP) in patients during supportive periodontal therapy (SPT) compared to hand instrumentation and ultrasonic scaling. Methods: The authors searched for randomized clinical trials in 8 electronic databases for relevant studies through November 15, 2019. The eligibility criteria were as follows: population, patients with chronic periodontitis undergoing SPT; intervention and comparison, patients treated by GPAP with a standard/nozzle type jet or mechanical instrumentation; and outcomes, bleeding on probing (BOP), patient discomfort/pain (assessed by a visual analogue scale [VAS]), probing depth (PD), gingival recession (Rec), plaque index (PI), clinical attachment level (CAL), gingival epithelium score, and subgingival bacteria count. After extracting the data and assessing the risk of bias, the authors performed the meta-analysis. Results: In total, 17 studies were included in this study. The difference of means for BOP in patients who received GPAP was lower (difference of means: -8.02%; 95% confidence interval [CI], -12.10% to -3.95%; P<0.00001; I2=10%) than that in patients treated with hand instrumentation. The results of patient discomfort/pain measured by a VAS (difference of means: -1.48, 95% CI, -1.90 to -1.06; P<0.001; I2=83%) indicated that treatment with GPAP might be less painful than ultrasonic scaling. The results of PD, Rec, PI, and CAL showed that GPAP had no advantage over hand instrumentation or ultrasonic scaling. Conclusions: The findings of this study suggest that GPAP may alleviate gingival inflammation more effectively and be less painful than traditional methods, which makes it a promising alternative for dental clinical use. With regards to PD, Rec, PI, and CAL, there was insufficient evidence to support a difference among GPAP, hand instrumentation, and ultrasonic scaling. Higher-quality studies are still needed to assess the effects of GPAP.