• Title/Summary/Keyword: Density interface

Search Result 956, Processing Time 0.033 seconds

Effect of Microstructure on Electrical Properties of Thin Film Alumina Capacitor with Metal Electrode (금속 전극 알루미나 박막 캐패시터의 전기적 특성에 미치는 미세구조의 영향)

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.309-313
    • /
    • 2011
  • The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and $PdCl_2$ solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 $nF/cm^2$, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of $10^4{\mu}A$.

Structural and electrical characteristics of IZO thin films deposited on flexible substrate (유연 기판 위에 증착된 IZO 박막의 구조적 및 전기적 특성)

  • Lee, B.K.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.39-44
    • /
    • 2011
  • In this study, we have investigated the structural and electrical characteristics of IZO thin films deposited on flexible substrate for the OLED (organic light emitting diodes) devices. For this purpose, PES was used for flexible substrate and IZO thin films were deposited by RF magnetron sputtering under oxygen ambient gases (Ar, $Ar+O_2$) at room temperature. In order to investigate the influences of the oxygen, the flow rate of oxygen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. All the samples show amorphous structure regardless of flow rate. The electrical resistivity of IZO films increased with increasing flow rate of $O_2$ under $Ar+O_2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO electrodes made by configuration of IZO/a-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show better current density-voltage-luminance characteristics than that of OLED devices with the commercial crystalline-ITO (c-ITO) anode film. It can be explained that very flat surface roughness and high work function of a-IZO anode film lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers. This suggests that a-IZO film is a promising anode materials substituting conventional c-ITO anode in OLED devices.

Preparation of Spherical Li4Ti5O12 and the Effect of Y and Nb Doping on the Electrochemical Properties as Anode Material for Lithium Secondary Batteries (리튬이온이차전지용 구형 Li4Ti5O12 음극 합성 및 Y와 Nb 도핑에 따른 전기화학적 특성)

  • Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Park, Tae-Jin;Jung, Sung-Hun;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.659-662
    • /
    • 2012
  • Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF

Realization of a High Precision Inspection System for the SOP Types of ICs (SOP형 IC의 고 정밀 외관검사 시스템 구현)

  • Tae Hyo Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.165-171
    • /
    • 2004
  • Owing to small sizes and high density to the semiconductor It, it is difficult to discriminate the defects of ICs by human eyes. High precision inspection system with computer vision is essentially established for the manufacturing process due to the variety of defective parts. Especially it is difficult to implement the algorithm for the coplanarity of IC leads. Therefore in this paper, the inspection system which can detect the defects of the SOP types of ICs having 1cm${\times}$0.5cm of the chip size is implemented and evaluated it's performance. In order to optimally detect various items, some principles of geometry are theoretically presented , length measurement, pitch measurement, angle measurement, brightness of image and correcton of position. The interface circuit is designed for implementation of inspection system and connected the HANDLER. In the result, the system could detect two ICs' defects per second and confirmed the resolution of 20$\mu$m per pixel.

  • PDF

Post Annealing Effect on the Characteristics of Al2O3 Thin Films Deposited by Aerosol Deposition on 4H-SiC (4H-SiC기판 위에 Aerosol Deposition으로 증착된 Al2O3박막의 후열처리 효과)

  • Yu, Susanna;Kang, Min-Seok;Kim, Hong-Ki;Lee, Young-Hie;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.486-490
    • /
    • 2014
  • $Al_2O_3$ films on silicon carbide were fabricated by Aerosol deposition with annealing temperature at $800^{\circ}C$ and $1,000^{\circ}C$. The effect of thermal treatment on physical properties of $Al_2O_3$ thin films has been investigated by XRD (X-ray diffraction), AFM (atomic force microscope), SEM (scanning electron microscope), and AES (auger electron spectroscopy). Also electrical properties have been investigated by Keithley 4,200 semiconductor parameter analyzer to explain the interface trapped charge density ($D_{it}$), flatband voltage ($V_{FB}$) and leakage current ($I_o$). $Al_2O_3$ films become crystallized with increasing temperature by calculating full width at half maximum (FWHM) of diffraction peaks, also surface morphology is observed by topography measurement in non-contact mode AFM. $D_{it}$ was $2.26{\times}10^{-12}eV^{-1}.cm^{-2}$ at $800^{\circ}C$ annealed sample, which is the lowest value in all samples. Also the sample annealed at $800^{\circ}C$ has the lowest leakage current of $4.89{\times}10^{-13}A$.

Surface and Internal Waves Scattering by Partial Barriers in a Two-Layer Fluid (이층유체에서 부분 장벽에 의한 표면파와 내부파의 분산)

  • Kumar, P.Suresh;Oh, Young-Min;Cho, Won-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.25-33
    • /
    • 2008
  • Water waves are generated mainly by winds in open seas and large lakes. They carry a significant amount of energy from winds into near-shore region. Thereby they significantly contribute to the regional hydrodynamics and transport process, producing strong physical, geological and environmental impact on coastal environment and on human activities in the coastal area. Furthermore an accurate prediction of the hydrodynamic effects due to wave interaction with offshore structures is a necessary requirement in the design, protection and operation of such structures. In the present paper surface and internal waves scattering by thin surface-piercing and bottom-standing vertical barriers in a two-layer fluid is analyzed in two-dimensions within the context of linearized theory of water waves. The reflection coefficients for surface and internal waves are computed and analyzed in various cases. It is found that wave reflection is strongly dependent on the interface location and the fluid density ratio apart from the barrier geometry.

Effect of Al2O3 Surface Passivation by Thermal Oxidation of Aluminum for AlGaN/GaN Structure (Al의 열산화 방법을 이용한 AlGaN/GaN 구조의 표면 Al2O3 패시베이션 효과)

  • Kim, Jeong-Jin;Ahn, Ho-Kyun;Bae, Seong-Bum;Pak, Young-Rak;Lim, Jong-Won;Moon, Jae-Kyung;Ko, Sang-Chun;Shim, Kyu-Hwan;Yang, Jeon-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.862-866
    • /
    • 2012
  • Surface passivation of AlGaN/GaN heterojunction structure was examined through the thermal oxidation of evaporated Al. The Al-oxide passivation increased channel conductance of two dimensional electron gas (2DEG) on the AlGaN/GaN interface. The sheet resistance of 463 ohm/${\Box}$ for 2DEG channel before $Al_2O_3$ passivation was decreased to 417 ohm/${\Box}$ after passivation. The oxidation of Al induces tensile stress to the AlGaN/GaN structure and the stress seemed to enhance the sheet carrier density of the 2DEG channel. In addition, the $Al_2O_3$ films formed by thermal oxidation of Al suppressed thermal deterioration by the high temperature annealing.

The improvement of Cu metal film adhesion on polymer substrate by the low-power High-frequency ion thruster

  • Jung Cho;Elena Kralkina;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.60-60
    • /
    • 2000
  • The adhesion interface formation between copper and poly(ethylene terephthalate)(PET), poly(methyl methacrylate)(PMMA) and Polyimide films was treated using Ion assisted reaction system to sequential sputter deposition by High-Frequency ion source. The ion beam modification system used a new type of low power HF ion thruster for space application as new low thruster electric propulsion system. Low power HF ion thruster with diameter 100mm gives the opportunity to obtain beams of Ar+ with currents 20~150 mA (current density 0.5~3.5 mA/cm2) and energy 200~2500eV at HF power level 10~150 W. Using Ar as a working gas it is possible to obtain thrust within 3~8 mN. Contact angles for untreated films were over 95$^{\circ}$ and 80 for Pet, 10o for PMMA and 12o for PI samples as a condition of ion assisted reaction at the ion dose of 10$\times$1016 ions/cm2, the ion beam potential of 1.2 keV and 4 ml/min for environmental gas flow rate. 900o peel tests yielded values of 15 to 35 for PET, 18 to 40 and 12 to 36 g/min. respectively. High resolution X-ray photoelectron spectrocopy is the Cls region for Cu metal on these polymer substrates showed increases in C=O-O groups for polymide, whereas PET and PMMA treated samples showed only C=O groups with increase the ion dose. Finally, unstable polymer surface can be changed from hydrophobic to hydrophilic formation such as C-O and C=O that were confirmed by the XPS analysis, conclusionally, the ion assisted reaction is very effective tools to attach reactive ion species to form functional groups on C-C bond chains of PET, PMMA and PI.

  • PDF

Formation Behavior of Anodic Oxide Films on Al 6061 Alloy in Sulfuric Acid Solution (황산 용액에서 Al6061 합금의 아노다이징 피막 형성거동)

  • Moon, Sungmo;Jeong, Kihun;Lim, Sugun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.393-399
    • /
    • 2018
  • Formation behavior of aluminum anodic oxide (AAO) films on Al6061 alloy was studied in view of thickness, morphology and defects in the anodic films in 20 vol.% sulfuric acid solution at a constant current density of $40mA/cm^2$, using voltage-time curve, observation of anodized specimen colors and surface and cross-sectional morphologies of anodic films with anodization time. With increasing anodizing time, voltage for film formation increased exponentially after about 12 min and its increasing rate decreased after 25 min, followed by a rapid decrease of the voltage after about 28 min. Surface color of anodized specimen became darker with increasing anodizing time up to about 20 min, while it appeared to be brighter with increasing anodizing time after 20 min. The darkened and brightened surfaces with anodizing time are attributed to an increase in thickness of porous anodic oxide film and a chemical damage of the films due to heat generated by increased resistance of the film, respectively. Cross-sectional observation of AAO films revealed the formation of defects of crack shape at the metal/oxide interface after 15 min which prevents the growth of AAO films. Width and length of the crack-like defect increased with anodizing time up to 25 min of anodizing, and finally the outer part of AAO films was partly dissolved or detached after 30 min of anodizing, resulting in non-uniform surface structures of the AAO films.