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Surface and Internal Waves Scattering by Partial Barriers in a Two-Layer Fluid
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Abstract : Water waves are generated mainly by winds in open seas and large lakes. They carry a significant
amount of energy from winds into near-shore region. Thereby they significantly contribute to the regional
hydrodynamics and transport process, producing strong physical, geological and environmental impact on
coastal environment and on human activities in the coastal area. Furthermore an accurate prediction of the
hydrodynamic effects due to wave interaction with offshore structures is a necessary requirement in the design,
protection and operation of such structures. In the present paper surface and internal waves scattering by thin
surface-piercing and bottom-standing vertical barriers in a two-layer fluid is analyzed in two-dimensions within
the context of linearized theory of water waves. The reflection coefficients for surface and internal waves are
computed and analyzed in various cases. It is found that wave reflection is strongly dependent on the interface

location and the fluid density ratio apart from the barrier geometry.
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1. INTRODUCTION

Floating and submerged structures are generally used to
reduce the transmitted wave height and protect various
types of coastal structures from high wave attack in the
downstream of wave motion. In recent years, there is a sig-
nificant interest in the use of partial breakwaters to attenu-
ate the wave energy. Most of these breakwaters are
extended from the bottom up to the water surface, while
partial breakwaters only occupy a segment of the whole
water depth. Partial barriers as breakwaters are more eco-

5 AN o -
o ke U=z AAFY A fAT e A 9Fe v

SNB0| R P, B, T}, W), A

o thate] EHE 493 2 WRrpAlTE TEE
Ro= w3 FH

nomical and sometimes more appropriate for engineering
applications. These kinds of breakwaters also provide a less
expensive means to protect beaches exposed to waves of
small or moderate amplitudes, and to reduce the wave
amplitude at resonance. Floating and submerged partial
breakwaters are also popularly known as surface-piercing
and bottom-standing breakwaters respectively. A bottom-
standing partial breakwater not only resists the wave prop-
agation but also allows the navigation of vessels over it.
They are also used for fish farming. With the environmen-
tal concems, the bottom-standing breakwater resists the
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sediment transport and provides a strong protection against
coastal erosion. On the other hand, a surface-piercing
breakwater does not require a strong bottom foundation and
most suitable for protecting coastal and offshore structures
in deep water region. The problems of wave past floating/
submerged breakwaters have been studied theoretically by
many researchers within the framework of linear wave the-
ory and in general most of the former studies are concerned
with determining the reflection and transmission properties
for a given incident wave. An explicit solution for the scat-
tering of waves by a pair of surface piercing vertical barri-
ers in deep water has been given by Levine and Rodemich
(1958). For bottom-standing rectangular bodies approxi-
mate solutions for long waves have been developed by
Ogilvie (1960), for long obstacles by Newman (1965), and
for low draft structures by Mei (1969). Newman (1965)
obtained an approximate solution for surface-waves eleva-
tion in the limit of a long submerged obstacle. Levine
(1965) studied the interaction of oblique waves with a com-
pletely submerged circular cylinder near the free surface
based on the Green’s function. Transmission and reflection
coefficients were calculated. When the obstacle is in the
form of a thick barrier with rectangular cross section
present in water of uniform finite depth, the corresponding
water wave scattering problems for normal incidence of a
wave ftrain have been investigated by Mei and Black
(1969). They used the variational formulation to solve the
problem. For a single floating cylinder of rectangular cross-
section, Black et al. (1971) also used the variational method
to solve the radiation problem and then used the Haskind
relation (Newman, 1976) to deduce the forces due to inci-
dent waves. Free surface elevations were obtained for a sin-
gle cylinder and for two cylinders in series. Garrison (1969)
investigated the interaction of an infinite shallow draft cyl-
inder oscillating at the free surface with a train of oblique
waves using the boundary integral method. Wave scattering
by a circular dock has been considered by Garrett (1971). A
number of authors have considered the two-dimensional
problems of the radiation and scattering of waves by two
parallel circular cylinders in deep water. Wang and Wahab
(1971) have extended the multipole method of Ursell (1949)
to analyze the heaving of two rigidly connected half-
immersed cylinders. Bolton and Ursell (1973) used the
multipole expansion method to the interaction of an infi-
nitely long circular cylinder with oblique waves. The added

mass, damping coefficients and vertical wave force were
calculated. Bai (1975) presented a finite element method to
study the diffraction of oblique waves by an infinite cylin-
der in water of infinite depth. Reflection and transmission
coefficients and the diffraction forces and moments were
computed for oblique waves incident upon a rectangular
cylinder. Leach et al. (1985) investigated the wave diffrac-
tion by a floating rigid breakwater and showed better effi-
ciency of such breakwaters compared to fixed rigid
breakwaters. Sollitt et al. (1986) examined a system com-
posed of two buoyant flaps clamped at the sea bottom and
coupled with weighted mooring lines. Abul-Azm and Wil-
liams (1997) used the eigenfunction expansion method to
examine oblique wave diffraction by a detached breakwater
system consisting of an infinite row of regular spaced thin,
impermeable structures located in water of uniform depth.
Recently Soylemez and Goren (2003) studied the diffrac-
tion of oblique water waves by thick rectangular barrier
mounted on seabed. They also studied the diffraction of
oblique water waves by thick rectangular barrier floating at
the free surface experimentally and investigated theoreti-
cally.

In the recent time, it is observed that there is an increas-
ing interest in understanding internal waves because often
in an ocean, internal waves are observed and are a time
cause of heavy damages experienced by many onshore and
offshore structures. For ocean engineers, interest in inter-
nal-waves is due to their role in submarine detection and
the generation of anomalous drag on ships in fjords and
estuaries. Such anomalous drag occurs when fresh water
from rivers and runoff forms a thin layer of light fluid
which lies above the cold saline water in a narrow fjord.
The passage of a ship can then generate internal waves
which radiate energy away from the neighborhood of the
ship. This lost energy is an additional wave drag for the
ship. Earlier the source of this energy loss was not easy to
identify and was regarded as mysterious. Regions having
this drag came to be known as “dead water” regions. The
more general scientific interest comes from the general role
of internal-waves in energy transport in lakes and oceans.
Moreover, the major challenge in case of internal-waves is
that they are not visible to the naked eye hence it is difficult
to detect them and take precautionary measures. The sim-
plest model of an internal-wave is when the density of the
liquid is taken to be piecewise constant. This means, the
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liquid can be described as two-layers of constant density
over each layer. In many natural bodies of water, stratifica-
tion of either temperature or salinity may take place which
can lead to large density differences with depth. A sharp
change in the fluid density at a certain water depth owing to
variation in salinity and/or temperature may be observed in
a lake, an estuary or Norwegian fjords. Another example of
sharp density change is a thin layer of muddy water at the
bottom of harbors or channels with relatively shallow water
depth. These density changes may significantly alter the
hydrodynamic characteristics of waves past coastal struc-
tures. The propagation of waves in a two-layer fluid with
both a free surface and an interface (in the absence of any
obstacles) was first investigated by Stokes (1847) and the
classical problem of this type of two-layer fluid separated
by a common interface with the upper fluid having a free
surface is given in Lamb (1932) Art. 231 and Wehausen
and Laitone (1960). Most of the past wave structure inter-
action studies are carried out with the assumption that the
fluid is of constant density over the entire fluid domain.
Until recently, very little work has been done on wave/
structure interaction studies in a two-layer fluid. Sturova
(1994) approximated the free surface as a rigid lid and stud-
ied the radiation of waves by an oscillating cylinder, mov-
ing uniformly in a direction perpendicular to its axis.
Linton and Mclver (1995) developed a general theory for
two-dimensional wave scattering by horizontal cylinders in
an infinitely deep two-layer fluid. They derived the reci-
procity relations that exist between the various hydrody-
namic characteristics of the cylinders. It is well-known that
a circular cylinder submerged in an infinitely-deep uniform
fluid reflects no wave energy, and it was shown in Linton
and Mclver (1995) that this is also true for a cylinder in the
lower layer of a two-layer fluid. Zilman and Miloh (1995,
1996) analyzed the effect of a shallow layer of fluid mud on
the hydrodynamics of floating bodies. Sturova (1999) con-
sidered the radiation and scattering problem for a cylinder
both in a two-layer as well as in a three-layer fluid bounded
above and below by rigid horizontal walls, For the three-
layer case the middle layer was linearly stratified represent-
ing a smooth pycnocline. Using the method of multi modes
Sturova was able to calculate the hydrodynamic character-
istics of the cylinder. Gavrilov et al. (1999) investigated the
effects of a smooth pycnocline on wave scattering for a
horizontal circular cylinder where the fluid is bounded

above and below by rigid walls. Their work included a
comparison between theoretical and experimental results,
with reasonable qualitative agreement but notable quantita-
tive disagreement. In the absence of obstacles, the appropri-
ate dispersion relation for such a two-layer fluid has two
solutions for a given frequency (Lamb, 1932, Art. 231). One
of these solutions corresponds to waves where the majority
of the disturbance is close to the free surface and the other
to waves on the interface between the two fluid layers.
Work on three-dimensional scattering can be found in
Yeung and Nguyen (1999) and Cadby and Linton (2000).
The motivation for their work came from a plan to build an
underwater pipe bridge across one of the Norwegian fjords.
In the Norwegian fjords typically, bodies of waters consists
of a layer of fresh water of about 10 m thick lies on the top
of a very deep body of salt water. Suresh Kumar et al.
(2004) and Suresh Kumar and Sahoo (2004) initiated the
studies on wave past flexible porous breakwaters in a two-
layer fluid. Manam and Sahoo (2005) used a generalized
orthogonal relation to investigate wave past porous struc-
tures in a two-layer fluid. Later, the wave trapping in SM
and IM by porous and flexible barriers near the end of a
semi-infinitely long channel is also analyzed by Suresh
Kumar and Sahoo (2005) in a two-layer fluid of finite
depth. Suresh Kumar et al. (2006) studied the wave scatter-
ing by submerged and floating rigid structures in a two-
layer fluid of finite depth. Recently, Suresh Kumar and
Sahoo (2006), and Suresh Kumar et al. (2007a) carried out
a detailed analysis to study the performance of a flexible
porous plate and membrane breakwaters respectively in a
two-layer fluid, where each fluid is assumed to be of finite
depth and the breakwater is extended over the entire water
depth. Suresh Kumar et al. (2007b) investigated the surface
and internal waves scattering by cylindrical dikes. The
problems are analyzed in two dimensions with the assump-
tion of small amplitude wave theory and breakwater response
to study the effect of both surface and internal waves. The
associated mixed boundary value problems are reduced to a
linear system of equations by utilizing a more general
orthogonal relation along with least squares approximation
method. They observed that wave reflection and transmis-
sion in a two-layer fluid by a flexible porous breakwater is
strongly dependent on the interface location and the fluid
density ratio apart from the structural properties. Studies on
a class of floating and submerged breakwaters in a two-
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layer fluid can be found in Suresh Kumar (2007).

In the present study, the wave scattering by thin partial
barriers is investigated in a two-layer fluid of finite depth.
The study includes both the cases of surface-piercing and
bottom-standing barriers. The reflection characteristics of
the system subjected to normal incident waves (one in the
surface mode (SM) at the free surface and the other in the
internal mode (IM) at the interface) are investigated. The
boundary value problem is solved by utilizing an orthogo-
nal relation suitable for the two-layer fluid domain. The
reflection coefficients for the surface and internal modes
are computed for various physical parameters like the fluid
density ratio, ratio of water depths of the two fluids and
mean wetted draft to analyze the two-layer fluid wave scat-
tering phenomena.

2. MATHEMATICAL FORMULATION

In the present study wave past thin rigid partial barrier is
considered. Schematic diagrams of bottom standing and
surface piercing barrier in a two-layer fluid are shown in
the Figs. 1 and 2 respectively. The fluid is assumed to be
inviscid and incompressible and the wave motion is consid-
ered in the linearized theory of water waves neglecting the
effect of surface tension. In the two-layer fluid, the upper
fluid has a free surface (undisturbed free surface located at
y =0) and the two fluids are separated by a common inter-
face (undisturbed interface located at y = /), each fluid is of
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Fig. 1. Definition sketch for surface-piercing barrier.
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Fig. 2. Definition sketch for bottom-standing barrier.

infinite horizontal extent occupying the region —oo <x <0;
0<y<h in case of the upper fluid of density p, and
—w<x<w; h<y<H in case of the lower fluid of density
p». The flow is assumed to be irrotational and simple har-
monic in time with angular frequency @ and hence the
velocity potential ®(x,y,?) exists such that ®(x,y,f) =Re
[#(x, y)exp(-iwx)]. The spatial velocity potential ¢ satisfy
the Laplace equation.

V>4,= 0 in the fluid region j )

with subscript 1 refers to the fluid region 1 (0 <x<oco,
0<x<H) and 2 refers to the fluid region 2 (0<x<oo,
0 <x<H) as shown in Figs. 1 and 2. The linearized free
surface boundary condition is

%}’&+K@=O(j=1,2) ony=0 )

where K = w?/g, and g is the gravitational constant. The
boundary condition at the interface requires that

@ is continuous across y = h, and 3)
(Bt Kb),h, = S(BytKB), - ,(j=1,2) fory=h
—00 <X <0 O]

where s is the ratio of the densities of the upper fluid and
the lower fluid, i.e s = p/p, and has range 0<s<l. The
condition on the rigid bottom is given by

¢,=0(j=1,2)ony=H &)

The radiation conditions are given by

b1 ("4 RE PPy (ppy) + U™+ Rye™r)
SoPipy) as x—>—c ©

and

j Py
$,— T1foor )*" + Ty oo ¥)e Tasx—-w0 (7)

where I, Iy represent the incident wave amplitudes in SM
(fast mode) and IM (slow mode) respectively. R, 7; and
Ry, Ty are the unknown reflected and transmitted wave
amplitudes in SM and IM respectively.

The boundary condition on the rigid barrier surface is
given by

o
Zi—o(i=1 =
o 0G=1,2) onx=0,

(0< y <H-b, for surface-piercing structure and
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H-b<y < H, for bottom-standing structure) ®)

The continuity of pressure and normal velocity along the
gap L, (L,e H-b<y<H on x=0 for surface-piercing bar-
rierand L, € 0<y<H-b onx=0 for bottom-standing bar-
rier) gives

¢ =4¢,, and o onx=0,yel, ®
3. METHOD OF SOLUTION

The spatial velocity potentials ¢ for j=1, 2 satisfying
Eq. (1) along with conditions (2), (3), (4), (5), (6) and (7)
are expressed as

_ ipp P
6 =1 fopp, YIe  + 1 folon, ye !

+ 3 Rofpwy)e " forx=0 (10)
n=LII1
= ip,x
and ¢2_ Z Tn.fn(pmy)e s for x>0 (11)
n=L1I1

where f5 (D, ¥) =
sinh p,(h—H)[p,coshmy—Ksinhp, y]
p,sinhp h+Kcoshp, h

coshp, (y—H), for h<y<H
n=L112,.) (12

, for O<y<h

R, T’s (n=1, 1I, 1, 2, ...) are unknown constants to be
determined. It may be noted that R; and Ry are related
with the reflections coefficients in SM Kr; and IM Kry
respectively (see Suresh Kumar and Sahoo, 2006 and
Suresh Kumar et al., 2007)). The wave numbers p;, p are
the positive real roots, and p.’s (n=1, 2, 3,...) are the
purely imaginary roots of the dispersion relation in p as
given by

(1-s)p"tanhp(H - hytanh ph—pK[tanh ph-+tanh p(H—k)]
+K’[stanhp(H~h)tanh ph+1]=0 (13)

The eigenfunctions f.( p., y) are integrable in 0<y <H
having a single discontinuity at y =/ and are orthogonal
(see Suresh Kumar and Sahoo (2006) and Suresh Kumar et

al. (2007)) with respect to the inner product as defined
below

h H
o Tk = PU SOV + 03 [ [,0MD)y (14)
0 h

On x =0 applying the continuity of ¢ along the barrier
and the continuity of ¢ and ¢ along the gap L, and invok-
ing the orthogonality relation of the eigenfunctions over
0 <y < H, we obtain the required linear systems of equa-
tions (see, Suresh Kumar et al., 2004, Suresh Kumar and
Sahoo, 2004, Suresh Kumar and Sahoo, 2005, Manam
and Sahoo, 2005, Suresh Kumar and Sahoo, 2006 and
Suresh Kumar et al., 2007). These systems of equations
are solved to obtain the various physical quantities of interest.

4. NUMERICAL RESULTS AND DISCUSSION

Numerical results are computed and analyzed for surface
and internal waves scattering by partial barriers in a two-
layer fluid. The effects of various non-dimensional physical
parameters on wave reflection in both SM and IM are
investigated. For convenience, the wave parameters are
given in terms of the non-dimensional wave number pd,
depth ratio 4#/H, fluid density ratio s and the non-dimen-
sional depth of submergence of barrier H/d.

4.1 Case of a Surface-Piercing Barrier

The wave reflection by a surface-piercing barrier are
analyzed in both SM and IM. For the sake of simplicity, all
the results are plotted versus the normalized wave number
pid in SM by allowing pyd (normalized wave number in
IM) to vary based on the two-layer fluid dispersion relation
(Eq. 13). It is observed that in general for all values of
H/d, with an increase in pd, the wave reflection in SM
increases and attains maximum in the deep water region.
On the other hand, the reflection coefficients in IM increase
with an increase in p,d and attain a maximum value in the
intermediate water depth and then decrease to zero.

The variation of single reflection coefficients in SM and
IM versus pid is plotted in Fig. 3(a and b) respectively for
different values of H/d. In Fig. 3(a), the wave reflection in
SM increases with an increase in the value of H/d. How-
ever, lowest wave reflection is observed when #/H=d/H in
the case of wave motion in SM. On the other hand, a high-
est peak is observed for wave reflection in IM in the case of
h/H=d/H (Fig. 3(b)). Moreover, the wave reflection in IM
increases with a decrease in the value of H/d.

The effect of depth ratio #/H on the barrier reflection
coefficients in SM and IM is shown in Fig. 4(a and b)
respectively. In Fig. 4(a), it is observed that the reflection
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Fig. 3. Reflection coefficients in (a) SM, Kr; and (b) IM, Kry
versus pid for a surface-piercing barrier at different
Hid values, h/H=10.25 and s=0.75.
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Fig. 4. Reflection coefficients in (a) SM, Kr; and (b) IM, Kry
versus pd for a surface-piercing barrier at different
h/H values, H/d=6.0 and s=0.75.
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Fig. 5. Reflection coefficients in (a) SM, Kr; and (b) IM, Kry
versus pid for a surface-piercing barrier at different s
values, H/d= 6.0 and #/H=0.25.

coefficients in SM are less sensitive to the depth ratio #/H.
On the other hand, the reflection coefficient in IM is found
to be increasing with a decrease in A/H ratio (Fig. 4(b)).
However, highest reflection peak is observed when the
interface at the center of free surface and seabed.

The reflection coefficients versus pid are plotted in SM
and IM for various values of s in Fig. 5(a and b) respec-
tively. In general it is observed that wave reflection in SM
increases with an increase in the value of s and a reverse
trend is observed in case of IM wave reflection.

4.2 Case of a Bottom-Standing Barrier

In the present subsection, the reflection coefficients in
SM and IM for bottom-standing barrier are analyzed for
various physical parameters of interest. ‘

The variation of reflection coefficients in SM and IM
versus p(H-d) (it may be noted that d is the barrier length
in case of bottom-standing barrier) are plotted in Fig. 6(a
and b) respectively for different values of H/d. In general, it
is observed that the wave reflection in both SM and IM are
found to be increasing with a decrease in H/d. However,
when the barrier tip approaches towards the interface the
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versus pid for a bottom-standing barrier at different
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Fig. 8. Reflection coefficients in (a) SM, Kr; and (b) IM, Kry
versus pid for a bottom-standing barrier at different s
values, W/H=0.25 and H/d=2.0.

wave reflection in both SM and IM increases very sharply.

The effect of interface location #/H on reflection coeffi-
cients in SM and IM are shown in Fig. 7(a and b) respec-
tively. It is observed that the reflection in both SM and IM
increases with an increase in #/H ratio and high wave reflec-
tion is observed when the tip of the barrier is approaching
towards the interface.

Reflection coefficients are plotted versus p{H—d) in SM
and IM for various values of s in Fig. 8(a and b) respec-
tively. It is observed that the wave reflection in both SM
and IM has higher reflection peaks as s—1.

5. CONCLUSIONS

The wave scattering by surface-piercing and bottom-
standing barriers in a two-layer fluid is investigated. Orthog-
onal relation suitable for the two-layer fluid is utilized to
solve the problems. The wave reflection for both surface-
piercing and bottom-standing barriers are found to be strongly
dependent on the interface location and the fluid density
ratio apart from the barrier geometry. These observations
are similar to those observed by Suresh Kumar and Sahoo
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(2006) and Suresh Kumar et al. (2007) where they found
that wave reflection and transmission in a two-layer fluid
by a flexible porous breakwater is strongly dependent on
the interface location and the fluid density ratio apart from
the structural properties. A similar approach can be utilized
to study more general problems in a two-layer fluid having
a free surface.
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