DOI QR코드

DOI QR Code

Effect of Al2O3 Surface Passivation by Thermal Oxidation of Aluminum for AlGaN/GaN Structure

Al의 열산화 방법을 이용한 AlGaN/GaN 구조의 표면 Al2O3 패시베이션 효과

  • Kim, Jeong-Jin (Department of Semiconductor and Chemical Engineering, Chonbuk University) ;
  • Ahn, Ho-Kyun (Electronics and Telecommunications Research Institute) ;
  • Bae, Seong-Bum (Electronics and Telecommunications Research Institute) ;
  • Pak, Young-Rak (Electronics and Telecommunications Research Institute) ;
  • Lim, Jong-Won (Electronics and Telecommunications Research Institute) ;
  • Moon, Jae-Kyung (Electronics and Telecommunications Research Institute) ;
  • Ko, Sang-Chun (Electronics and Telecommunications Research Institute) ;
  • Shim, Kyu-Hwan (Department of Semiconductor and Chemical Engineering, Chonbuk University) ;
  • Yang, Jeon-Wook (Department of Semiconductor and Chemical Engineering, Chonbuk University)
  • Received : 2012.10.09
  • Accepted : 2012.10.24
  • Published : 2012.11.01

Abstract

Surface passivation of AlGaN/GaN heterojunction structure was examined through the thermal oxidation of evaporated Al. The Al-oxide passivation increased channel conductance of two dimensional electron gas (2DEG) on the AlGaN/GaN interface. The sheet resistance of 463 ohm/${\Box}$ for 2DEG channel before $Al_2O_3$ passivation was decreased to 417 ohm/${\Box}$ after passivation. The oxidation of Al induces tensile stress to the AlGaN/GaN structure and the stress seemed to enhance the sheet carrier density of the 2DEG channel. In addition, the $Al_2O_3$ films formed by thermal oxidation of Al suppressed thermal deterioration by the high temperature annealing.

Keywords

References

  1. S. Tanaka, S. Iwai, and Y. Aoyagi, J. Crystal Growth, 170, 329 (1997). https://doi.org/10.1016/S0022-0248(96)00611-2
  2. A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, Jpn. J. Appl. Phys., 36, 899 (1997). https://doi.org/10.1143/JJAP.36.L899
  3. H. T. Kim, R. M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, IEEE Elec. Dev. Lett., 24, 421 (2003). https://doi.org/10.1109/LED.2003.813375
  4. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, Thin Solid Films, 418, 89 (2002). https://doi.org/10.1016/S0040-6090(02)00787-3
  5. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, Surf. Sci., 506, 313 (2002). https://doi.org/10.1016/S0039-6028(02)01432-2
  6. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, and E. J. Mittemeijer, J. Appl. Phys., 92, 1649 (2002). https://doi.org/10.1063/1.1491591
  7. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, and K. Chu, J. Appl. Phys., 85, 3222 (1999). https://doi.org/10.1063/1.369664