• Title/Summary/Keyword: Density estimation method

Search Result 555, Processing Time 0.04 seconds

A Study on the Speed Sensorless Vector Control for Induction Motor Adaptive Control Method using a High Frequency Boost Chopper of Hybrid Type Piezoelectric Transformer (하이브리드형 압전 변압기의 고주파 승압 초퍼를 이용한 적응제어기법 유도전동기 속도 센서리스 벡터제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Song-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.332-345
    • /
    • 2013
  • In this paper, recently, it is described to the piezoelectric transformer technology develops, because it was have to favorable characteristics such as electromagnetic-noise free, compact size, higher efficiency, and superior power density, flux linkage, noiseless, etc. its resonance frequency was used to output waveform of a sine wave. A rotor speed identification method of induction motor based on the theory of flux model reference adaptive system(FMRAS). The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the model are introduced to perform accurate rotor speed estimation. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM techniuqe and DC-DC converter. High speed calculation and processing for vector control is carried out by digital signal one chip microprocessor. Validity of the proposed control method is verified through simulation and experimental results.

Estimation of Shelf Life for Propellant KM6 by Using Gamma Process Model (감마과정 모델을 이용한 KM6 추진제의 저장수명 예측)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • The aim of the study is to investigate the method to estimate a shelf life of KM6 single base propellant by stochastic gamma process model. The state failure level is assumed that the degradation content of stabilizer is below 0.8%. The constant of time dependent shape function and the scale parameter of stationary gamma process are estimated by moment method. The state distribution at each storage time can be shown from probability density function of deterioration. It is estimated that the $B_{10}$ life, a time at which the cumulative failure probability is 10%, is 25 years and the $B_{50}$ life is 36 years from cumulative failure distribution function curve. The $B_{50}$ life can be treated as the average shelf life from the practical viewpoint and the lifetime can be expressed as distribution curve by using stochastic process theory.

Analysis of Estimation of Ultimate Lateral Capacity of Pile in Multi-Layered Soil Using CPT Results and Proposal of Modified Lateral Earth Pressure (다층조건에서 CPT를 이용한 말뚝의 극한수평지지력 평가 분석 및 수정 수평토압분포 제안)

  • Hong, Jung-Moo;Kyung, Doo-Hyun;Kang, Beong-Joon;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.47-57
    • /
    • 2009
  • In this study, the ultimate lateral load capacity of pile driven into multi-layered soil was estimated using cone penetration test results and a method was proposed to reflect multi-layered soil conditions. For multi-layered specimens prepared with different relative density at different layers, the cone penetration tests and lateral pile load tests were conducted. Based on the test results, measured and estimated values of the ultimate lateral load were compared and analyzed. The estimated results were obtained from the methods proposed by Broms (1964), Petrasovits & Award (1972) and Prasad & Chari (1999). The method was proposed for modifying the earth pressure distribution of Prasad & Chari (1999) to consider multi-layered soil conditions. From the analysis, it was seen that results obtained from the proposed method showed improvement with less data scatter similarly to those obtained from Broms (1964) and Petrasovits & Award (1972)'s methods.

A Simple Method for the Estimation of Hyperelastic Material Properties by Indentation Tests (압입시험을 통하여 초탄성 재료 물성치를 평가하는 단순한 방법)

  • Song, Jae-Uk;Kim, Min-Seok;Jeong, Gu-Hun;Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.273-278
    • /
    • 2019
  • In this study, a new simple method for the estimation of hyperelastic material properties by indentation tests is proposed. Among hyperelastic material models, the Yeoh model with three material properties ($C_{10}$, $C_{20}$, $C_{30}$) is adopted to describe the strain energy density in terms of strain invariants. Finite element simulations of the spherical indentation of hyperelastic materials of the Yeoh model with different material properties are performed to establish a database of indentation force-displacement curves. The indentation force-displacement curves are fitted by cubic polynomials, which are approximated as a product of third-order polynomials of ($C_{10}$, $C_{20}$, $C_{30}$). A regression analysis is conducted to determine the coefficients of the equations for the indentation force-displacement curve approximations. A regression equation is used to estimate the hyperelastic material properties. The present method is verified by comparing the estimated material properties with true values.

Study on the Home-range and Winter Habitat Pintail using the Wild-Tracker (WT-300) in Korea (WT-300을 이용한 월동기 고방오리(Anas acuta)의 행동권 및 서식지 이용연구)

  • Jung, Sang-Min;Shin, Man-Seok;Cho, Hae-jin;Han, Seung-Woo;Son, Han-Mo;Kim, Jeong Won;Kang, Sung-Il;Lee, Han-soo;Oh, Hong-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Pintail (Anas acuta) is the major wintering bird in South Korea and known as a major mediator of the highly pathogenic avian influenza (HPAI). Pintail migrates long distances between Russian Siberia and Korea. This species prefers a rice paddy area as their winter habitat. The purpose of this study is to provide the data necessary for the conservation and management of bird habitats in Korea by understanding the wintering home-range and habitat of pintail in Korea. We captured six pintails using a cannon-net in the winter of 2015 and attached the GPS-mobile phone based telemetry (WT-300) on them to study the wintering home-range and wintering habitat. We analyzed the tracking location data using ArcGIS 9.0 Animal Movement Extension and calculated Kernel Density Estimation (KDE) and Minimum Convex Polygon (MCP). The average home-range in the wintering ground analyzed by MCP was $677.3km^2$ (SD=130.2, n=6) while the maximum and minimum were $847.7km^2$ and $467.5km^2$, respectively. Extents of home-range analyzed by KDE were $194.7km^2$ (KDE 90%), $77.4km^2$ (KDE 70%), and $35.3km^2$ (KDE 50%). The pintails mostly used both sea and paddy field as habitat in the winter season and utilized paddy fields more during the nighttime and than the daytime. We concluded that the home-range and habitat of pintails in the winter could be used as the reference data for the preservation of species, management of habitats, and coping with a breakout of HPAI.

A Study on Estimation of Traffic Flow Using Image-based Vehicle Identification Technology (영상기반 차량인식 기법을 이용한 교통류 추정에 관한 연구)

  • Kim, Minjeong;Jeong, Daehan;Kim, Hoe Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.110-123
    • /
    • 2019
  • Traffic data is the most basic element necessary for transportation planning and traffic system operation. Recently, a method of estimating traffic flow characteristics using distance to a leading vehicle measured by an ADAS camera has been attempted. This study investigated the feasibility of the ADAS vehicle reflecting the distance error of image-based vehicle identification technology as a means to estimate the traffic flow through the normalized root mean square error (NRMSE) based on the number of lanes, traffic demand, penetration rate of probe vehicle, and time-space estimation area by employing the microscopic simulation model, VISSIM. As a result, the estimate of low density traffic flow (i.e., LOS A, LOS B) is unreliable due to the limitation of the maximum identification distance of ADAS camera. Although the reliability of the estimates can be improved if multiple lanes, high traffic demands, and high penetration rates are implemented, artificially raising the penetration rates is unrealistic. Their reliability can be improved by extending the time dimension of the estimation area as well, but the most influential one is the driving behavior of the ADAS vehicle. In conclusion, although it is not possible to accurately estimate the traffic flow with the ADAS camera, its applicability will be expanded by improving its performance and functions.

Analysis of Tree Roughness Evaluation Methods Considering Depth-Dependent Roughness Coefficient Variation (수심별 조도계수 변화를 고려한 수목 조도공식 특성 분석)

  • Du Han Lee;Dong Sop Rhee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.51-63
    • /
    • 2023
  • Riverine tree management is crucial in realizing a balance between flood control and ecological preservation, which requires an accurate assessment of the impact of trees on river water elevations. In this study, eight different formulas for evaluating vegetation roughness considering the drag force acting on trees, were reviewed, and the characteristics and applicability of these methods were evaluated from a practical engineering perspective. The study compared the characteristics of vegetation roughness measurement methods for calculated roughness coefficients at different water depths and analyzed factors such as effects of tree canopy width, tree density and diameter, and tree stiffness coefficient, and water level estimation results. A comparison of roughness coefficients at the same water depths revealed that the Kouwen and Fathi-Moghadam formulas and the Fischenich formula yield excessive drag coefficients compared to other formulas. Factors such as channel geometry, tree diameter, and tree density showed varying trends depending on the formula but did not exhibit excessive outliers. Formulas considering the tree stiffness coefficient, such as the Freeman et al.'s formula and the Whittaker et al.'s formula, showed significant variations in drag coefficients depending on the stiffness coefficient. When applied to small- and medium-sized virtual rivers in South Korea using the drag coefficient results from the eight formulas, the results indicated a maximum increase in water level of approximately 0.2 to 0.4 meters. Based on this review, it was concluded that the Baptist et al., Huthoff et al., Cheng, Luhar, and Nepf's formulas, which exhibit similar characteristics and low input data uncertainties, are suitable for practical engineering applications.

Estimation of Probability Precipitation by Regional Frequency Analysis using Cluster analysis and Variable Kernel Density Function (군집분석과 변동핵밀도함수를 이용한 지역빈도해석의 확률강우량 산정)

  • Oh, Tae Suk;Moon, Young-Il;Oh, Keun-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.225-236
    • /
    • 2008
  • The techniques to calculate the probability precipitation for the design of hydrological projects can be determined by the point frequency analysis and the regional frequency analysis. Probability precipitation usually calculated by point frequency analysis using rainfall data that is observed in rainfall observatory which is situated in the basin. Therefore, Probability precipitation through point frequency analysis need observed rainfall data for enough periods. But, lacking precipitation data can be calculated to wrong parameters. Consequently, the regional frequency analysis can supplement the lacking precipitation data. Therefore, the regional frequency analysis has weaknesses compared to point frequency analysis because of suppositions about probability distributions. In this paper, rainfall observatory in Korea did grouping by cluster analysis using position of timely precipitation observatory and characteristic time rainfall. Discordancy and heterogeneity measures verified the grouping precipitation observatory by the cluster analysis. So, there divided rainfall observatory in Korea to 6 areas, and the regional frequency analysis applies index-flood techniques and L-moment techniques. Also, the probability precipitation was calculated by the regional frequency analysis using variable kernel density function. At the results, the regional frequency analysis of the variable kernel function can utilize for decision difficulty of suitable probability distribution in other methods.

Study on the Electromagnetic Excitation System for the Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor (초고속 회전체용 공기 포일 베어링의 동특성 계수 측정을 위한 전자석 가진장치에 관한 연구)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.18-25
    • /
    • 2013
  • Recently the requirement of long-term mobile energy source for mobile robot or small-sized unmanned vehicle is highly increased, and the micro turbine generator(MTG) which is known to have high energy and power density is under development. MTG is designed to have air foil bearing and high speed rotor of which operating speed is 400,000rpm. In the development stage of high speed rotor and bearing, stability analysis for the full operational speed range is essential and the dynamic coefficients such as stiffness and damping coefficients of bearing depending on the rotational speed are required for that. Although perturbation method is usually used to identify the dynamic coefficients, it's not easy to give the perturbation to the high speed rotating rotor. In this study, we present the dynamic coefficients measurement system for air foil bearing which consists of electromagnets, gap sensors, high speed motor and controller. This measurement system can exert the sine sweep force to the rotor-bearing, measure the displacement of rotor and get FRF(Frequency response function) of rotor-bearing. The least square estimation method is applied to identify the dynamic coefficients of bearing from the measured frequency response at the different rpm and the identified dynamic coefficients for the wide rotational speed range are presented.

Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall (집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구)

  • Kim, Min-Seok;Choi, Ji-Hyeok;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.739-745
    • /
    • 2018
  • Recently, the incidence of heavy rainfall is increasing. Therefore, a rainfall analysis should be performed considering increasing frequency. The current rainfall analysis for hydrologic design use the hourly rainfall data of ASOS with a density of 36 km on the Korean Peninsula. Therefore, medium and small scale watershed included Thiessen network at the same rainfall point are analyzed with the same design rainfall and time distribution. This causes problem that the watershed characteristics can not be considered. In addition, there is a problem that the temporal-spatial change of the heavy rainfall occurring in the range of 10~20 km can not be considered. In this study, Author estimated design rainfall considering heavy rainfall using minutely rainfall data of AWS, which are relatively dense than ASOS. Also, author analyzed the time distribution and runoff of each case to estimate the huff's method suitable for the watershed. The research result will contribute to the estimation of the design hydrologic data considering the heavy rainfall and watershed characteristics.