• Title/Summary/Keyword: Density - function Technique

Search Result 230, Processing Time 0.024 seconds

Magnetic Characteristics of an InSb Hall Device of Multilayerd Structure (다충구조 InSb 홀소자의 제작과 특성)

  • 이우선;김상용;서용진;박진성;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.681-687
    • /
    • 2000
  • Magnetic Characteristics of an InSb hall device of multilayered structures were investigated. For the measurement of electrical properties of the hall device InSb thin films fabricated with series and parallel multilayers wee evaporated. Hall coefficient hall mobility carrier density and hall voltage were measured as a function of the intensity of magnetic field. We found that the XRD analysis of InSb thin film showed good properties at 20$0^{\circ}C$ 60 minutes. Resistance of ohmic contact was increased linearly due to increasing current. Hall voltages at 0.01 T showed 5$\times$10$^{-4}$ [V] and $1.5\times$10$^{-3}$ [V]. Some of device fabrication technique and analysis of magnetic characteristics were discussed.

  • PDF

Polymorphic Forms of Furosemide Characterized by THz Time Domain Spectroscopy

  • Ge, Min;Liu, Guifeng;Ma, Shihua;Wang, Wenfeng
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2265-2268
    • /
    • 2009
  • Terahertz time domain spectroscopy (THz-TDS) is applied in transmission to identify the five forms of modifications of furosemide and one commercial product from 0.3 THz to 1.6 THz at room temperature. The different absorption spectra of the different forms are sensitive to crystal structures. Density function theory (DFT) calculation was used to understand the vibrational modes of furosemide in the THz region. X-ray powder diffractometry (XRPD) was applied to confirm the different forms of modifications. The results demonstrate that THz-TDS is a potential analytical technique in investigating polymorphic forms in the pharmaceutical fields.

Walking load model for single footfall trace in three dimensions based on gait experiment

  • Peng, Yixin;Chen, Jun;Ding, Guo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.937-953
    • /
    • 2015
  • This paper investigates the load model for single footfall trace of human walking. A large amount of single person walking load tests were conducted using the three-dimensional gait analysis system. Based on the experimental data, Fourier series functions were adopted to model single footfall trace in three directions, i.e. along walking direction, direction perpendicular to the walking path and vertical direction. Function parameters such as trace duration time, number of Fourier series orders, dynamic load factors (DLFs) and phase angles were determined from the experimental records. Stochastic models were then suggested by treating walking rates, duration time and DLFs as independent random variables, whose probability density functions were obtained from experimental data. Simulation procedures using the stochastic models are presented with examples. The simulated single footfall traces are similar to the experimental records.

Structural Vibration Control Technique using Modified Probabilistic Neural Network

  • Chang, Seong-Kyu;Kim, Doo-Kie
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.667-673
    • /
    • 2010
  • Recently, structures are becoming longer and higher because of the developments of new materials and construction techniques. However, such modern structures are more susceptible to excessive structural vibrations which cause deterioration in serviceability and structural safety. A modified probabilistic neural network(MPNN) approach is proposed to reduce the structural vibration. In this study, the global probability density function(PDF) of MPNN is reflected by summing the heterogeneous local PDFs automatically determined in the individual standard deviation of each variable. The proposed algorithm is applied for the vibration control of a three-story shear building model under Northridge earthquake. When the control results of the MPNN are compared with those of conventional PNN to verify the control performance, the MPNN controller proves to be more effective than PNN methods in decreasing the structural responses.

Generalized equivalent spectrum technique

  • Piccardo, G.;Solari, G.
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.161-174
    • /
    • 1998
  • Wind forces on structures are usually schematized by the sum of their mean static part and a nil mean fluctuation generally treated as a stationary process randomly varying in space and time. The multi-variate and multi-dimensional nature of such a process requires a considerable quantity of numerical procedures to carry out the dynamic analysis of the structural response. With the aim of drastically reducing the above computational burden, this paper introduces a method by means of which the external fluctuating wind forces on slender structures and structural elements are schematized by an equivalent process identically coherent in space. This process is identified by a power spectral density function, called the Generalized Equivalent Spectrum, whose expression is given in closed form.

Virtual Reality Technology for Multipurpose Numerical Simulation in Marine Environmental Engineering (해양환경공학의 다목적 수치시뮬레이션을 위한 Virtual Reality 기술)

  • Park, Jong-Chul
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.174-180
    • /
    • 2002
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D-Numerical Wave Tank. The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation, and the Marker-Density function technique is adopted to implement the fully-nonlinear free-surface kinematic condition. The marine environmental situations, i.e. waves, currents, wind, etc., are reproduced by use of multi-segmented wavemaker on the basis of the so-called "snake-principle". In this paper, some numerical reproduction techniques for regular and irregular waves, multi-directional waves, Bull's-eye wave, wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

  • PDF

The domestic development of 60kw Electron Beam Welding System (고정밀 60kW급 전자빔 용접시스템 국산화 개발)

  • 정원희;엄기원;정인철
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • The main characteristic of the Electron Beam Welding technique is its high energy density which produces thin and deep welds with very little distortion. High accelerated electrons, focused in a beam of 0.5 ∼ 2mm diameter, produce narrow welds with deep penetration. The result is a small HAZ as well as a low and uniform distortion which is predictible within very narrow limits. But the small diameter of the EB increases the requirements for the equipment control system for centering the beam on the welding joint in order to avoid any lack of fusion. Therefore, in this paper, we introduce the system developed at our company and the quality of welding zone, the detail function of system.

  • PDF

Large Eddy Simulation of Turbulent Heat Transfer in a Straight Cooling Passage with Various Aspect Ratios (형상비변화에 따른 직선냉각유로에 대한 난류열전달 LES해석)

  • Park, Tae-Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.274-277
    • /
    • 2012
  • Large eddy simulation is applied to the turbulent flow and heat transfer in straight cooling passages with varying aspect ratio. The turbulent statistics of the flow and thermal quantities are calculated and the characteristics of Nusselt number are investigated. To scrutinize near-wall streamwise vortices, a conditional sampling technique is adopted. Clockwise and counter-clockwise rotating streamwise vortices are sampled and the probability density function of the vortex circulation Reynolds number and wall Nusselt number are calculated.

  • PDF

The Study of Auxiliary Power Unit for locomotive (철도차량용 보조전원장치에 관한 연구)

  • Jeong, Han-Dong;Lee, Won-Cheol;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.615-619
    • /
    • 2009
  • There are many increasing demands for efficient high power density of auxiliary power unit(APU) for high speed traction application. Many techniques have been proposed to measure the voltage flicker on the traditional pulse width modulation(PWM) inverter. This paper proposes a novel functionality of the static inverter on the APU to mitigate the voltage flicker and regulate the output voltage. A new control algorithm for the inverter based on the Hilbert transform(HT) is presented. The HT is employed as an effective technique for tracking the voltage flicker levels in APU systems. Simulation results are provided to verify the tracking capabilities of the HT and to evaluate the performance of the proposed DG interface for multi-function operation.

  • PDF

Probabilistic tunnel face stability analysis: A comparison between LEM and LAM

  • Pan, Qiujing;Chen, Zhiyu;Wu, Yimin;Dias, Daniel;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • It is a key issue in the tunnel design to evaluate the stability of the excavation face. Two efficient analytical models in the context of the limit equilibrium method (LEM) and the limit analysis method (LAM) are used to carry out the deterministic calculations of the safety factor. The safety factor obtained by these two models agrees well with that provided by the numerical modelling by FLAC 3D, but consuming less time. A simple probabilistic approach based on the Mote-Carlo Simulation technique which can quickly calculate the probability distribution of the safety factor was used to perform the probabilistic analysis on the tunnel face stability. Both the cumulative probabilistic distribution and the probability density function in terms of the safety factor were obtained. The obtained results show the effectiveness of this probabilistic approach in the tunnel design.