• Title/Summary/Keyword: Dense gas

Search Result 293, Processing Time 0.031 seconds

The relationship of dense molecular gas and HI/H2 gas in a MALATANG galaxy, NGC 6946

  • Poojon, Panomporn;Chung, Aeree;Lee, Bumhyun;Oh, Se-Heon;Tan, Qing-Hua;Gao, Yu;Sengupta, Chandreyee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.76.3-76.3
    • /
    • 2019
  • We present the results from our comparisons of HCN and HCO+ (J=4-3) with HI and $H_2$ gas in NGC 6946, a sample from a mapping study of the dense molecular gas in the strongest star-forming galaxies (MALATANG). The MALATANG is one of the JCMT legacy surveys on the nearest 23 IR-brightest galaxies beyond the Local Group, which aims to study the relations of dense molecular gas with more general cool gas such as atomic and molecular hydrogen gas, and star formation properties in active galaxies. In this work, we particularly focus on the comparisons between the JCMT HCN/HCO+ (J=4-3) data and the THINGS HI/the NRO CO (J=1-0) data. We probe the dense molecular gas mass as a function of HI and $H_2$ mass in different locations in the central ${\sim}1.5kpc^2$ region. We discuss how the excess/deficit of $HI/H_2$ or total cool gas ($HI+H_2$) mass controls the presence and/or the fraction of dense molecular gas.

  • PDF

A Lagrangian Stochastic Model for Dense Gas Dispersion in the Neutrally-stratified Atmospheric Surface Layer (이상적인 중립 대기경계층에서 고밀도가스의 확산예측을 위한 라그랑지안 확률모델)

  • Kim, Byung-Gu;Lee, Changhoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.537-545
    • /
    • 2005
  • A new dispersion model for dense gas is constructed in the Lagrangian framework. Prediction of concentration by the proposed model is compared with measure data obtained in the experiment conducted in Thorney Island in 1984. Two major effects of dense gas dispersion, gravity slumping and stratification effect, are successfully incorporated into LDM (Lagrangian dense gas model). Entrainment effect is naturally modelled by introducing stochastic dispersion model with the effect of turbulence suppression by stratification. Not only various releasing conditions but also complex terrain can be extended to, although proposed model is appropriate for flat terrain.

What Determines Star Formation Rates?

  • Evans, Neal
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.29.4-29.4
    • /
    • 2016
  • The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated molecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation "efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.

  • PDF

CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. IV. HIERARCHICAL STRUCTURE

  • Minh, Young Chol;Liu, Hauyu Baobab;Chen, Huei-Ru Vivien
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.3
    • /
    • pp.77-85
    • /
    • 2020
  • In the molecular cloud G33.92+0.11A, massive stars are forming sequentially in dense cores, probably due to interaction with accreted gas. Cold dense gas, which is likely the pristine gas of the cloud, is traced by DCN line and dust continuum emission. Clear chemical differences were observed in different source locations and for different velocity components in the same line of sight. Several distinct gas components coexist in the cloud: the pristine cold gas, the accreted dense gas, and warm turbulent gas, in addition to the star-forming dense clumps. Filaments of accreted gas occur in the northern part of the A1 and A5 clumps, and the velocity gradient along these features suggests that the gas is falling toward the cloud and may have triggered the most recent star formation. The large concentration of turbulent gas in the A2 clump seems to have formed mainly through disturbances from the outside.

The Improvement of Cake Filtration Rate using CO2 Gas Saturation (이산화탄소(CO2) 가스에 의한 케이크 여과속도의 향상)

  • Yim, Sung Sam;Song, Yun Min
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.468-475
    • /
    • 2006
  • For the filtration of super compactible cake, the high filtration pressure can not improve filtration rate. As the high pressure, in this case, decreases the cake porosity adjacent to filter medium and thus forms 'dense skin' which decreases the rate of liquid flow in a great extent. Actually, there was no method to improve filtration rate for the filtration with super compactible cake. We propose the saturation of $CO_2$ gas into the suspension before the filtration operation for improving the filtration rate. The dissolved $CO_2$ gas transforms itself into gas phase in the dense skin through which the pressure changes dramatically. The gas secures its space inside the dense skin, and finally forms the flow passages which improve the filtration rate.

Lagrangian Particle Model for Dense Gas Dispersion (고밀도 가스 확산 예측을 위한 라그란지안 입자 모델)

  • Ko, S.;Lee, C.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.899-904
    • /
    • 2003
  • A new model for dense gas dispersion is formulated within the Lagrangian framework. In several accidental released situations, denser-than-air vapour clouds are formed which exhibit dispersion behavior markedly different from that observed for passive atmospheric pollutants. For relevant prediction of dense gas dispersion, the gravity and entrainment effects need to implemented. The model deals with negative buoyancy which is affected by gravity. Also, the model is subjected to entrainment. The mean downward motion of each particle was accounted for by considering the Langevin equation with buoyancy correction term.

  • PDF

Development of the Fire Prevention Method related to Gas in the Area of Dense Energy Consumption (에너지 사용 밀집지역에서의 가스 관련 화재예방 기법 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2018
  • Accident likelihood is growing due to a correlation for gas and electricity installed in the area of dense energy consumption like traditional market and underground shopping center. In order to prevent and respond accident risks related to gas and electricity in this area, it should be monitored and predicted for factors of gas leak or electricity by developing safety management system. This study is about accident prediction model development considering fire risk factor related to gas accident. The temperature variation characteristic near a gas burner was analyzed. Also, accident prediction algorithm and related module were developed to prevent fire in the area of dense energy consumption.

Thermophoresis in Dense Gases: a Study by Born-Green- Yvon Equation

  • Han Minsub
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1027-1035
    • /
    • 2005
  • Thermophoresis in dense gases is studied by using a multi-scale approach and Born- Yvon­Green (BYG) equation. The problem of a particle movement in an ambient dense gas under temperature gradient is divided into inter and outer ones. The pressure gradient in the inner region is obtained from the solutions of BYG equation. The velocity profile is derived from the conservation equations and calculated using the pressure gradient, which provides the particle velocity in the outer problem. It is shown that the temperature gradient applied to the quiescent ambient gas induces some pressure gradient and thus flow tangential to the particle surface in the interfacial region. The mechanism that induces the flow may be the dominant source of the thermophretic particle movement in dense gases. It is also shown that the particle velocity has a nonlinear relationship with the applied temperature gradient and decreases with increasing temperature.

Preparation of gas-atomized Fe-based alloy powders and HVOF sprayed coatings

  • Chau, Joseph Lik Hang;Pan, Alfred I-Tsung;Yang, Chih-Chao
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.343-348
    • /
    • 2017
  • High-pressure gas atomization was employed to prepare the Fe-based $Fe_{50}Cr_{24}Mo_{21}Si_2B_3$ alloy powder. The effect of flow rate of atomizing gas on the median powder diameter was studied. The results show that the powder size decreased with increasing the flow rate of atomizing gas. Fe-based alloy coatings with amorphous phase fraction was then prepared by high velocity oxygen fuel spraying (HVOF) of gas atomized $Fe_{50}Cr_{24}Mo_{21}Si_2B_3$ powder. Microstructural studies show that the coatings present dense layered structure and low porosity of 0.17% in about $200{\mu}m$ thickness. The Fe-based alloy coating exhibits an average hardness of about 1230 HV. Our results show that the HVOF process results in dense and well-bonded coatings, making it attractive for protective coatings applications.

Process Hazard Review and Consequence Effect Analysis for the Release of Chlorine Gas from Its Storage Tank (염소저장탱크에서의 가스 누출시 공정위험검토 및 결과영향분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.61-73
    • /
    • 2003
  • Most of the accidents occurred from the chemical plants are related to the catastrophic gas release events when the large amount of toxic materials is leaked from its storage tank or transmitting pipe lines. In this case, the greatest concerns are how the spreading behaviors of leakages are depended on the ambient conditions such as air stability and other environmental factors. Hence, we have focused on the risk assessments and consequential analysis for chlorine as an illustrative example. As appeared in the result, Fire & Explosion Index depicted it a bit dangerous with presenting the comprehensive degrees of hazard 90.7. And as a result of Phast6.0/ALOHA, the trends of each scenario appeared considerably identical although there are some differences in the resulting effects according to the input data for the Gas Model. The consequence analysis is performed numerically based on the dense gas mode. In the future, using more correct input data, material properties, and topographical configuration, the method of this research will be useful for the guideline of the risk assessment when the release of toxicants breaks out.