DOI QR코드

DOI QR Code

CHEMICAL DIAGNOSTICS OF THE MASSIVE STAR CLUSTER-FORMING CLOUD G33.92+0.11. IV. HIERARCHICAL STRUCTURE

  • Received : 2019.12.04
  • Accepted : 2020.06.08
  • Published : 2020.06.30

Abstract

In the molecular cloud G33.92+0.11A, massive stars are forming sequentially in dense cores, probably due to interaction with accreted gas. Cold dense gas, which is likely the pristine gas of the cloud, is traced by DCN line and dust continuum emission. Clear chemical differences were observed in different source locations and for different velocity components in the same line of sight. Several distinct gas components coexist in the cloud: the pristine cold gas, the accreted dense gas, and warm turbulent gas, in addition to the star-forming dense clumps. Filaments of accreted gas occur in the northern part of the A1 and A5 clumps, and the velocity gradient along these features suggests that the gas is falling toward the cloud and may have triggered the most recent star formation. The large concentration of turbulent gas in the A2 clump seems to have formed mainly through disturbances from the outside.

Keywords

References

  1. Asvany, O., Schlemmer, S., & Gerlich, D. 2004, Deuteration of $CH^+_n$ (n = 3 - 5) in Collisions with HD Measured in a Low-Temperature Ion Trap, ApJ, 617, 685 https://doi.org/10.1086/425212
  2. Charnley, S. B. 1997, Sulfuretted Molecules in Hot Cores, ApJ, 481, 396 https://doi.org/10.1086/304011
  3. Das, A., Sahu, D., Majumdar, L., & Chakrabarti, S. K. 2016, MNRAS, Deuterium Enrichment of the Interstellar Grain Mantle, 455, 540 https://doi.org/10.1093/mnras/stv2264
  4. Fish, V. L., Reid, M. J., Wilner, D. J., & Churchwell, E. 2003, Hi Absorption toward UC HII Regions: Distances and Galactic Structure, ApJ, 587, 701 https://doi.org/10.1086/368284
  5. Gerlich, D., Herbst, E., & Roueff, E. 2002, $H^+_3$+HD${\rightarrow}H_2D^{+}+H_2$: Low-temperature Laboratory Measurements and Interstellar Implications, Planet. Space Sci., 50, 1275 https://doi.org/10.1016/S0032-0633(02)00094-6
  6. Hatchell, J., Thompson, M. A ., Millar, T. J., & Macdonald, G. H. 1998, Sulphur Chemistry and Evolution in Hot Cores, A&A, 338, 713
  7. Leurini, S., Rolffs, R., Thorwirth, S., et al. 2006, APEX 1 mm Line Survey of the Orion Bar, A&A, 454, L47 https://doi.org/10.1051/0004-6361:20065555
  8. Lis, D. C., Gerin, M., Phillips, T. G., & Motte, F. 2002, The Role of Outflows and C Shocks in the Strong Deuteration of L1689N, A&A, 569, 322
  9. Liu, H. B., Jimenez-Serra, I., Ho, P. T. P., et al. 2012, Fragmentation and OB Star Formation in High-Mass Molecular Hub-Filament Systems, ApJ, 756, 10 https://doi.org/10.1088/0004-637X/756/1/10
  10. Liu, H. B., Galvan-Madrid, R., Jimenez-Serra, I., et al. 2015, ALMA Resolves the Spiraling Accretion Flow in the Luminous OB Cluster-forming Region G33.92+0.11, ApJ, 804, 37 https://doi.org/10.1088/0004-637X/804/1/37
  11. Liu, H. B., Chen, H. V., Roman-Zuniga, C. G., et al. 2019, Investigating Fragmentation of Gas Structures in OB Cluster-forming Molecular Clump G33.92+0.11 with 1000 au Resolution Observations of ALMA, ApJ, 871, 185 https://doi.org/10.3847/1538-4357/aaf6b4
  12. Minh, Y. C., Chen, H.-R., Su, Y.-N., & Liu, S.-Y. 2012, SMA Observations of the Hot Cores of DR21(OH), JKAS, 45, 157
  13. Minh, Y. C., Liu, H. B., & Galvan-Madrid, R. 2016, Chemical Diagnostics of the Massive Star Cluster-forming Cloud G33.92+0.11. I. $^{13}CS$, $CH_3OH$, $CH_3CN$, OCS, $H_2S$, $SO_2$, and SiO, ApJ, 824, 99 https://doi.org/10.3847/0004-637X/824/2/99
  14. Minh, Y. C. 2016, Sulfur-bearing Molecules Observed in the Massive Star-forming Regions DR21(OH) and G33.92+0.11, J. Phys. Conf. Ser., 728, 052007 https://doi.org/10.1088/1742-6596/728/5/052007
  15. Minh, Y. C., Liu, H. B., Galvan-Madrid, R., et al. 2018, Chemical Diagnostics of the Massive Star Cluster-forming Cloud G33.92+0.11. II. HDCS and DCN, ApJ, 864, 102 https://doi.org/10.3847/1538-4357/aad909
  16. Minh, Y. C. & Liu, H. B. 2019, Chemical Diagnostics of the Massive Star Cluster-Forming Cloud G33.92+0.11. III. $^{13}CN$ and DCN, JKAS, 52, 83
  17. Roberts, H. & Millar, T. J. 2000a, Modelling of Deuterium Chemistry and Its Application to Molecular Clouds, A&A, 361, 388
  18. Rodgers, S. & Millar, T. 1996, The Chemistry of Deuterium in Hot Molecular Cores, MNRAS, 280, 1046 https://doi.org/10.1093/mnras/280.4.1046
  19. Rodgers, S. D. & Charnley, S. B. 2001, Chemical Differentiation in Regions of Massive Star Formation, ApJ, 546, 324 https://doi.org/10.1086/318263
  20. Schoier, F. L., van der Tak, F. F. S., van Dishoeck E. F., & Black, J. H. 2005, An Atomic and Molecular Database for Analysis of Submillimetre Line Observations, A&A, 432, 369 https://doi.org/10.1051/0004-6361:20041729
  21. Tine, S., Roueff, E., Falgarone, E., et al. 2000, Deuterium Fractionation in Dense Ammonia Cores, A&A, 356, 1039
  22. van Dishoeck, E. F., Blake, G. A., Jansen, D. J., & Groesbeck, T. D. 1995, Molecular Abundances and Low-Mass Star Formation. II. Organic and Deuterated Species toward IRAS 16293-2422, ApJ, 447, 760 https://doi.org/10.1086/175915
  23. Watt, S. & Mundy, L. G. 1999, Molecular Environments of Young Massive Stars: G34.26+0.15, G11.94-0.62, G33.92+0.11, and IRAS 18511+0146, ApJS, 125, 143 https://doi.org/10.1086/313273
  24. Zinchenko, I., Liu, S.-Y., Su, Y.-N., et al. 2012, A Multi-wavelength High-resolution study of the S255 Star-forming Region: General Structure and Kinematics, ApJ, 755, 177 https://doi.org/10.1088/0004-637X/755/2/177