• Title/Summary/Keyword: Denitrification rate

Search Result 313, Processing Time 0.023 seconds

Influence of Free Nitrous Acid on Thiosulfate-Utilizing Autotrophic Denitrification (티오황산염을 이용한 황탈질과 Free Nitrous Acid의 영향)

  • Ahn, Johwan;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.220-225
    • /
    • 2014
  • A sequencing batch reactor (SBR) was operated to obtain thiosulfate-utilizing denitrifier cultivated with two types of electron accepter (nitrate and nitrite). Using the microbial biomass obtained from the SBR, batch tests were conducted with different nitrite concentrations (50 and 100 mg-N/L) at pH 7.0, 7.5 and 7.9 to see how free nitrous acid (FNA) negatively works on the thiosulfate-utilizing denitrification of nitrate. The specific denitrification rate (SDR) of nitrate was significantly influenced by pH and FNA. The presence of nitrite caused a remarked decrease of the SDR under low pH conditions, because of the microbiological inhibitory effect of FNA. The minimum SDR was observed when initial nitrite concentration was 100 mg-N/L at pH 7.0. Moreover. the SDR was influenced by the type of electron acceptor used during the SBR operation. Thiosulfate-utilizing denitrifier cultivated with nitrite showed smaller SDR on the thiosulfate-utilizing denitrification of nitrate than those cultivated with nitrate.

Treatment of Landfill Leachate using H2O2/O3 AOP and UASB Process (I) - Treatment Characteristics of Leachate depending on H2O2/O3 AOP Pretreatment and Available Nitrogen Form - (H2O2/O3 AOP와 UASB 공정을 이용한 매립지 침출수 처리(I) - H2O2/O3 AOP 전처리 및 질소원에 따른 침출수별 처리특성 -)

  • Jeong, Seung Hyun;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2005
  • In order to treat leachate from aged landfill site effectively, removal of biologically recalcitrant organic matter and denitrification efficiency were evaluated through the combination of $H_2O_2/O_3$ AOP pretreatment process and UASB process. The results can be summarized as follows. In case of leachate having low COD/N ratio from aged landfill site, it is possible to increase available COD for denitrification in nitrate utilizing denitrification and nitrite utilizing denitrification both by enhancing biodegradability of recalcitrant organic matter as applying $H_2O_2/O_3$ AOP to pretreatment process. In this experiment, it is found that available COD for denitrification can be increased to 1.0 and 0.4 g/day, respectively. Comparison has been made between requiring COD and available COD for denitrification in each experimental stages. It is expected that high rate of denitrification can be achieved with leachate from young landfill site because higher amount of available COD for denotrification is present in the leachate than the amount of requiring COD for denitrification. Especially, In leachate from aged landfill site with low COD/N ratio, it can be concluded that denitrification using nitrite nitrogen can enhance overall denitrification performance efficiently because denitrification using nitrite nitrogen requires less amount of carbon source than denitrification using nitrate nitrogen. Comparing the biogas production rate and nitrogen content of biogas under the condition of same amount of nitrate and nitrite addition, biogas production and nitrogen content of biogas are increased during denitrification after $H_2O_2/O_3$ AOP pretreatment process. Therefore, it can be confirmed that COD/N ratio in the leachate is increased. Applying $H_2O_2/O_3$ AOP as pretreatment system of landfill leachate seems to have little economic benefit because it requires additional carbon source to denitrify ammonia nitrogen in leachate coming from aged landfill site. However, it is possible to apply this pretreatment process to leachate from old landfill site in view of AOP process can achieve removal of biologically recalcitrant organic matter and increase of available COD for denitrification simultaneously.

Nitrongen and Phosphorus Removal using Elutriated Acids of Food Waste as an External Carbon Source in SBR (음식물쓰레기 세정산발효액을 외부탄소원으로 주입한 SBR 공정에서 질소 및 인 제거)

  • Kwon, Koo-ho;Kim, Si-won;Lee, Min-jae;Min, Kyung-sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.462-467
    • /
    • 2006
  • An improvement of nitrogen and phosphorus removal in SBR using the elutriated acids from the food waste as an external carbon source was investigated in this study. The food waste was elutriated at $35^{\circ}C$ and pH 9 to produce the external carbon source. The elutriate of food waste were continuously collected. The elutriated liquid contained VFAs of 39,180 mg/L representing soluble COD of 44,700 mg/L. The SBR showed poor denitrification and EBPR (enhanced biological phosphorus removal) without elutriated VFAs addition. An average denitrification rate was 0.4 mg NOx-N/g MLVSS/day. In turn, EBPR was also inhibited by this poor denitrification because the remaining nitrate in anaerobic phase resulting a poor denitrification. On the other hand, the denitrification in anoxic phase significantly improved with an elutriated VFAs addition. Nitrate removal was 82% while the denitrification rate was 2.9 mg NOx-N/g MLVSS/day with 18.4 mL/cycle of elutriated VFAs. With the enhanced denitrification, nitrate concentration in anaerobic phase could effectively be controlled to a very low level. The elimination of nitrate inhibition in anaerobic phase resulted enhancement of EBPR. The specific phosphate release rate was $1.9mg\;PO_4^{3-}-P/g\; MLVSS/day$ with less than 0.5 mg/L of $PO_4^{3-}-P$ concentration.

A Study on the Removal of Nitrogen and Phosphorus by Addition of Coagulant in the Sulfur Denitrification Process Coupled to the Membrane Bioreactor (MBR과 황탈질 공정에서 응집제 주입에 따른 질소.인 제거에 관한 연구)

  • Lee, Young-Ho;Yoo, Soung-Jong;Oh, Dae-Min;Lee, Young-Sin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.949-956
    • /
    • 2010
  • A method for simultaneous removal of nitrogen and phosphate from sewage by elemental sulfur denitrification with membrane bioreactor was proposed, and capacity $10\;m^3$/day of pilot plant was operated for 350 days. This study was investigated to have the effect of denitrification rate and T-P removal with the addition of Alum in Sulfur denitrification Reactor (SDR). The addition of Alum and alkalinity ($NaHCO_3$) in the effluent of MBR was tried to remove simultaneous phosphate and nitrogen in SDR. Characteristics of total nitrogen (T-N) and total phosphate (T-P) removal was compared without and with the addition of Alum as a coagulant. T-N removal without and with the addition of Alum was 92.1% and 87.8%, respectively. And denitrification efficiency was 93.8% and 87.1%, respectively. T-P removal rate was increased to 75.6% in SDR by addition of Alum (2.6~4 mg/L as Al), but T-P removal rate was about 26.7% without the addition of Alum. Therefore, denitrification rate was 6.7% of reduction but T-P removal rate was increased by addition of Alum.

A Study on the Biogeochemistry of the Sediments in the Han River Estuary (한강하구 퇴적물의 생지화학적 반응에 관한 연구)

  • Lim, Bo-Mi;Ki, Bo-Min;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.839-844
    • /
    • 2009
  • This research investigates the importance of the microbial metabolic pathways such as denitrification, iron reduction, and methanogenesis, in the degradation of organic matters of the sediments. There are statistically significant differences( P < 0.05) in the rates of denitrification, iron reduction, and methanogenesis according to the location: Site A has no plant, Site B is dominated by Scirpus, and Site C is dominated by Phragmites. Among them, Site C showed different methanogenesis rate depending on the sediments depth. The organic matter content increased from Site A to Site C. Site A had the smallest organic matter content whereas it showed the largest denitrification rate and iron reduction rate. Site C had the largest methanogenesis rate. Denitrification is the dominant pathways based on the assumption that anaerobic degradation of organic matter is mainly carried out through denitrification, iron reduction, and methanogenesis.

Nitrogen Removal Performance at Various DO Concentrations in the Bioreactor Packed with Submerged Cilia Media and Granular Sulfur (DO농도 조절에 따른 황 충전 섬모상 반응조의 질소제거 성능 변화)

  • Moon, Jin-Young;Hwang, Yong-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.519-526
    • /
    • 2006
  • In this study, the major operating factors in SND(simultaneous nitrification and denitrification) using bioreactor packed with submerged cilia media and granular sulfur such as variation of nitrification rate, organic matter removal efficiency and denitrification efficiency in different DO concentration were mainly evaluated. Synthetic wastewater and actual sewage were used as influent wastewater. Experiment with synthetic wastewater as influent wastewater was divided into three phases with the adjustment of DO concentration. As the results, nitrification efficiency and T-N removal efficiency in the Phase 3(DO 1.0~2.0 mg/L) were 99% and 52.3%, which is significantly greater than those in other two phases. Also, loading rate and denitrification efficiency of SCPGS(Submerged Cilia media Packed with Granular Sulfur) were calculated as $0.44kg\;NO_3^--N/m^3-day$ and 50%, respectively. On the other hand, nitrification rate was decreased from 99% to 64% according to the DO concentration with the variation from 3.0~3.5 mg/L(phase1) to 0.4~0.6mg/L(phase2). Although the nitrification rate was decreased in 64% according to the variation of the DO concentration, T-N removal rate was rapidly increased to 49% by increasing of the denitrification efficiency. Experiment with actual sewage as influent wastewater was carried out to evaluate efficiency of SCPGS in real operation condition of full-scale sewage water treatment plant. At the time, T-N removal rate in this experiment and full-scale wastewater treatment plants were given by 43% and 20%, respectively. The above results indicate that SCPGS can be used as an advanced treatment process for economical efficiency considered.

High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur (황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거)

  • Kim, Dae-young;Moon, Jin-young;Baek, Jin-uk;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

A Study on Seasonal Nitrogen Treatment Characteristics according to Design of Constructed Wetland (인공습지의 형태에 따른 계절별 질소처리 특성 연구)

  • Son, Yeong-Kwon;Yoon, Chun-Gyeong;Kim, Jun-Sik;Kim, Hyung-Joong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.94-101
    • /
    • 2012
  • The performance data for eight years from a free-surface-flow constructed wetland system receiving agricultural tailwater were used to analyze denitrification rate and nitrogen treatment characteristics according to season and wetland design. Seasonal difference between growing season (March~November) and winter season (December~February) was shown in the concentration of all nitrogen species. Seasonal nitrogen treatment has similar trend with temperature and measured denitrification rate. The highest denitrification rate was measured in July, but treatment efficiency was most higher in May and June. Nitrogen absorption of vegetation could affect to these wetland performances, therefore dense population of wetland vegetation might be helpful. According to design of wetland, at least 25~50 m of wetland length was needed to decrease effluent T-N concentration to background concentration in growing season. In winter season, wetland needed much longer distance to reduce T-N concentration. Mass removal rate was continuously high through whole year because runoff coefficient was low in winter season. Applicability of constructed wetland was observed for the total maximum daily load that control T-N load.

Removal of Nitrogen and Phosphorus from Municipal Wastewater by a Pilot-scale BNR Process (파이롯트 규모의 BNR 공법에 의한 도시하수의 질소 및 인 제거)

  • Kim, Young-Chur
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.589-599
    • /
    • 2007
  • This study was conducted to investigated the removal efficiency of BOD and nutrient for the treatment of low strength municipal wastewater by a biological nutrient removal system. In this experiment, the effect of operating parameter including HRT of 7.0hr, BOD/TN ratios of 2.62~4.08, internal recycle of 50~300%, and return sludge of 50~100%, were studied during winter season. Efficiencies of organic matter and T-P removal and denitrification were not significantly affected by the change of temperature in winter season. However, the specific nitrification rate and nitrification efficiency decreased at low temperature. Besides, denitrification efficiencies increased with increasing BOD/TN ratios. It was also found that the internal recycle and return sludge ratio below 50% is required for the effective denitrification of low strength municipal wastewater. With operating mode 4 of the optimum, the effluent BOD, T-N and T-P concentration were obtained to average 5.8, 14.6, and 0.84 mg/L, respectively. The temperature-activity coefficient (${\theta}$) of specific nitrification rate, specific denitrification rate and specific phosphorus uptake rate were obtained 1.044, 1.017, 1.028, respectively.

The Effect of Geological Media on the Denitrification of Nitrate in Subsurface Environments (지중환경 내 지질 매체가 질산염의 탈질 반응에 미치는 영향에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.16-27
    • /
    • 2020
  • Nitrate contamination has received much attention at local as well as regional scales. The domestic situation is not out of exception, and it has been reported to be very serious, particularly within agricultural areas as a result of excessive usage of nitrogen fertilizers. Meanwhile, nitrate can be naturally attenuated by denitrification in subsurface environments. The denitrification occurs through biotic (biological) and abiotic processes, and numerous previous studies preferentially focused the former. However, abiotic denitrification seems to be significant in specific environments. For this reason, this study reviewed the previous studies that focused on abiotic denitrification processes. Firstly, the current status of nitrate contamination in global and domestic scales is presented, and then the effect of geological media on denitrification is discussed while emphasizing the significance of abiotic processes. Finally, the implications of the literature review are presented, along with future research directions that warrant further investigations. The results of previous studies demonstrated that several geological agents could play a vital role in reducing nitrate. Iron-containing minerals such as pyrite, green rust, magnetite, and dissolved ferrous ion are known to be powerful electron donors triggering denitrification. In particular, it was proven that the rate of denitrification by green rust was comparative to that of biological denitrification. The results indicate that abiotic denitrification should be taken into account for more accurate evaluation of denitrification in subsurface environments.