• Title/Summary/Keyword: Demand for Research Information

Search Result 1,699, Processing Time 0.037 seconds

Cross-covariance 3D Coordinate Estimation Method for Virtual Space Movement Platform (가상공간 이동플랫폼을 위한 교차 공분산 3D 좌표 추정 방법)

  • Jung, HaHyoung;Park, Jinha;Kim, Min Kyoung;Chang, Min Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.41-48
    • /
    • 2020
  • Recently, as the demand for the mobile platform market in the virtual/augmented/mixed reality field is increasing, experiential content that gives users a real-world felt through a virtual environment is drawing attention. In this paper, as a method of tracking a tracker for user location estimation in a virtual space movement platform for motion capture of trainees, we present a method of estimating 3D coordinates of the 3D cross covariance through the coordinates of the markers projected on the image. In addition, the validity of the proposed algorithm is verified through rigid body tracking experiments.

A Reinforcement Learning Framework for Autonomous Cell Activation and Customized Energy-Efficient Resource Allocation in C-RANs

  • Sun, Guolin;Boateng, Gordon Owusu;Huang, Hu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3821-3841
    • /
    • 2019
  • Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become imperative in designing new solutions. In this paper, we propose a generic framework of autonomous cell activation and customized physical resource allocation schemes for energy consumption and QoS optimization in wireless networks. We formulate the problem as fractional power control with bandwidth adaptation and full power control and bandwidth allocation models and set up a Q-learning model to satisfy the QoS requirements of users and to achieve low energy consumption with the minimum number of active RRHs under varying traffic demand and network densities. Extensive simulations are conducted to show the effectiveness of our proposed solution compared to existing schemes.

Energy and Service Level Agreement Aware Resource Allocation Heuristics for Cloud Data Centers

  • Sutha, K.;Nawaz, G.M.Kadhar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5357-5381
    • /
    • 2018
  • Cloud computing offers a wide range of on-demand resources over the internet. Utility-based resource allocation in cloud data centers significantly increases the number of cloud users. Heavy usage of cloud data center encounters many problems such as sacrificing system performance, increasing operational cost and high-energy consumption. Therefore, the result of the system damages the environment extremely due to heavy carbon (CO2) emission. However, dynamic allocation of energy-efficient resources in cloud data centers overcomes these problems. In this paper, we have proposed Energy and Service Level Agreement (SLA) Aware Resource Allocation Heuristic Algorithms. These algorithms are essential for reducing power consumption and SLA violation without diminishing the performance and Quality-of-Service (QoS) in cloud data centers. Our proposed model is organized as follows: a) SLA violation detection model is used to prevent Virtual Machines (VMs) from overloaded and underloaded host usage; b) for reducing power consumption of VMs, we have introduced Enhanced minPower and maxUtilization (EMPMU) VM migration policy; and c) efficient utilization of cloud resources and VM placement are achieved using SLA-aware Modified Best Fit Decreasing (MBFD) algorithm. We have validated our test results using CloudSim toolkit 3.0.3. Finally, experimental results have shown better resource utilization, reduced energy consumption and SLA violation in heterogeneous dynamic cloud environment.

Enhancement of Semantic Interoper ability in Healthcare Systems Using IFCIoT Architecture

  • Sony P;Siva Shanmugam G;Sureshkumar Nagarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.881-902
    • /
    • 2024
  • Fast decision support systems and accurate diagnosis have become significant in the rapidly growing healthcare sector. As the number of disparate medical IoT devices connected to the human body rises, fast and interrelated healthcare data retrieval gets harder and harder. One of the most important requirements for the Healthcare Internet of Things (HIoT) is semantic interoperability. The state-of-the-art HIoT systems have problems with bandwidth and latency. An extension of cloud computing called fog computing not only solves the latency problem but also provides other benefits including resource mobility and on-demand scalability. The recommended approach helps to lower latency and network bandwidth consumption in a system that provides semantic interoperability in healthcare organizations. To evaluate the system's language processing performance, we simulated it in three different contexts. 1. Polysemy resolution system 2. System for hyponymy-hypernymy resolution with polysemy 3. System for resolving polysemy, hypernymy, hyponymy, meronymy, and holonymy. In comparison to the other two systems, the third system has lower latency and network usage. The proposed framework can reduce the computation overhead of heterogeneous healthcare data. The simulation results show that fog computing can reduce delay, network usage, and energy consumption.

A Framework of Resource Provisioning and Customized Energy-Efficiency Optimization in Virtualized Small Cell Networks

  • Sun, Guolin;Clement, Addo Prince;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5701-5722
    • /
    • 2018
  • The continuous increase in the cost of energy production and concerns for environmental sustainability are leading research communities, governments and industries to amass efforts to reduce energy consumption and global $CO_2$ footprint. Players in the information and communication industry are keen on reducing the operational expenditures (OpEx) and maintaining the profitability of cellular networks. Meanwhile, network virtualization has been proposed in this regard as the main enabler for 5G mobile cellular networks. In this paper, we propose a generic framework of slice resource provisioning and customized physical resource allocation for energy-efficiency and quality of service optimization. In resource slicing, we consider user demand and population resources provisioning scheme aiming to satisfy quality of service (QoS). In customized physical resource allocation, we formulate this problem with an integer non-linear programming model, which is solved by a heuristic algorithm based on minimum vertex coverage. The proposed algorithm is compared with the existing approaches, without consideration of slice resource constraints via system-level simulations. From the perspective of infrastructure providers, traffic is scheduled over a limited number of active small-cell base stations (sc-BSs) that significantly reduce the system energy consumption and improve the system's spectral efficiency. From the perspective of virtual network operators and mobile users, the proposed approach can guarantee QoS for mobile users and improve user satisfaction.

Optimization of Water Reuse System under Uncertainty (불확실성을 고려한 하수처리수 재이용 관로의 최적화)

  • Chung, Gun-Hui;Kim, Tae-Woong;Lee, Jeong-Ho;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Due to the increased water demand and severe drought as an effect of the global warming, the effluent from wastewater treatment plants becomes considered as an alternative water source to supply agricultural, industrial, and public (gardening) water demand. The effluent from the wastewater treatment plant is a sustainable water source because of its good quality and stable amount of water discharge. In this study, the water reuse system was developed to minimize total construction cost to cope with the uncertain water demand in future using two-stage stochastic linear programming with binary variables. The pipes in the water reuse network were constructed in two stages of which in the first stage, the water demands of users are assumed to be known, while the water demands in the second stage have uncertainty in the predicted value. However, the water reuse system has to be designed now when the future water demands are not known precisely. Therefore, the construction of a pipe parallel with the existing one was allowed to meet the increased water demands in the second stage. As a result, the trade-off of construction costs between a pipe with large diameter and two pipes having small diameters was evaluated and the optimal solution was found. Three scenarios for the future water demand were selected and a hypothetical water reuse network considering the uncertainties was optimized. The results provide the information about the economies of scale in the water reuse network and the long range water supply plan.

A Study on the Priority Order Evaluation of the Water Supply Monitoring Technology Development for the Intelligent Underground Facility Management (지능형 지하시설물관리를 위한 상수도 모니터링 기술개발의 우선순위 평가에 관한 연구)

  • Kim, Jung-Hoon;Yi, Mi-Sook;Han, Jay-Il
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.263-278
    • /
    • 2008
  • Nowaday, local governments have planned to manage intelligent underground facilities through the u-City project. But, the intelligent underground facilities are in need of the progressive approach because of the required huge financial resources. Therefore, the objectives of this research are (1) to prioritize the monitoring items of sensing technology developments, (2) to study technological feasibilities, and (3) to discover the killer application which expands ripple effects on economy. To achieve these objectives, final monitoring items were derived from the business analysis of the water supply, the local government survey, the hearing expert opinions and so on. The priority order of final monitoring items were technology developments of (1) the flowmeter flux, (2) the water leakage/crack, (3) the pressure of water supply pipes, and (4) the flux of filtration plants. The research significance is obtained from the derivation and the evaluation of the priority order and the actual demand for the water supply facility management. And, the research results will contribute to the strategic planning for the underground facility intelligence.

  • PDF

Improved Quality Keyframe Selection Method for HD Video

  • Yang, Hyeon Seok;Lee, Jong Min;Jeong, Woojin;Kim, Seung-Hee;Kim, Sun-Joong;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3074-3091
    • /
    • 2019
  • With the widespread use of the Internet, services for providing large-capacity multimedia data such as video-on-demand (VOD) services and video uploading sites have greatly increased. VOD service providers want to be able to provide users with high-quality keyframes of high quality videos within a few minutes after the broadcast ends. However, existing keyframe extraction tends to select keyframes whose quality as a keyframe is insufficiently considered, and it takes a long computation time because it does not consider an HD class image. In this paper, we propose a keyframe selection method that flexibly applies multiple keyframe quality metrics and improves the computation time. The main procedure is as follows. After shot boundary detection is performed, the first frames are extracted as initial keyframes. The user sets evaluation metrics and priorities by considering the genre and attributes of the video. According to the evaluation metrics and the priority, the low-quality keyframe is selected as a replacement target. The replacement target keyframe is replaced with a high-quality frame in the shot. The proposed method was subjectively evaluated by 23 votes. Approximately 45% of the replaced keyframes were improved and about 18% of the replaced keyframes were adversely affected. Also, it took about 10 minutes to complete the summary of one hour video, which resulted in a reduction of more than 44.5% of the execution time.

Ethical Use of Web-based Welfare Technology for Caring Elderly People Who Live Alone in Korea: A Case Study

  • Soyun Choi;Kyungsook Kim;Chayapol Kamyod;Cheong Ghil Kim
    • Journal of Web Engineering
    • /
    • v.21 no.4
    • /
    • pp.1239-1264
    • /
    • 2022
  • This study examined ethical ways to use welfare technology in a situation where the demand for non-face-to-face welfare services using Cloud based healthcare systems had increased rapidly in caring for elderly people who live alone. Through focus group interviews with social workers related to the care of elderly people who live alone, in-depth interviews were conducted on the current situation, problems, ethical issues, and development directions arising in the implementation of welfare technology. The main areas of interest were focused on improving safety in caring them using IoT technology and enhancing emotional support in preventing lonely deaths using companion robot and AI speaker. Issues such as the need for individualization, client-centeredness, privacy, self-determination, competence, informed consent, right to know, convenience, and advocacy were identified as important ethical considerations related to use of welfare technology. The research results suggested that various stakeholders should participate in the development of ethical indicators and welfare technology for the ethical use of welfare technology.

Development of Diagnosis System about Services and Infrastructure for Rural Welfare and Culture (농촌 복지·문화 서비스 및 인프라 진단체계 개발)

  • Kim, Soo-Jin;Bae, Seung-Jong;Kim, Dae-Sik;Im, Sang-Bong
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.1
    • /
    • pp.51-65
    • /
    • 2019
  • This study developed diagnostic system to understand the level of welfare cultural service and infrastructure in rural areas. The applicability was reviewed through the Delphi survey and the sample survey of 60 villages. The diagnostic indicators consist of three areas: the demand area, supply area, and delivery area. The demand area consists of 8 indicators, 25 indicators for welfare services and infrastructure (healthcare, social welfare) and 32 indicators for cultural services and infrastructure (culture, education, leisure sports). The service delivery area was divided into service supply area access and traffic accessibility (public transport use status and rural transport model status) by each indicator. A diagnostic system was applied to 60 villages. Services and infrastructure for rural welfare and culture were supplied more in the Si area than Gun area. The delivery area was easier to access the Gun area than Si area. In the case of traffic access, public transportation was more frequently used in the Si area than Gun area, and the rural transportation model was found to have a relatively large amount in the Gun area compared to Si area. The diagnosis system about services and infrastructure for rural welfare and culture will provide information necessary for establishment and decision making of regional development policy taking into account characteristics of rural areas in the future.