• Title/Summary/Keyword: Demand Variable

Search Result 572, Processing Time 0.027 seconds

Modeling Demand for Rural Settlement of Urban Residents (도시민의 농촌이주 수요모형 분석: 정착자금 지원효과를 중심으로)

  • Lee, Hee-Chan
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.2
    • /
    • pp.97-110
    • /
    • 2009
  • The objective of this research was to develop a rural settlement demand model to analyze the determinants of settlement demand of urban residents. The point aimed at from model development was deriving stated preference of potential consumers towards rural settlement through setting a hypothetical market, and using settlement subsidy as a surrogate variable for price in the demand model. The adequate demand model deducted from hypothetical market data was derived from the basis of Hanemann's utility difference theory. In the rural settlement demand model, willingness to accept was expressed by a function of settlement subsidy. Data utilized in the analysis was collected from surveys of households nationwide. According to inferred results of the demand model, settlement subsidy had a significant influence on increasing demand for rural settlement. A significant common element was found among variables affecting demand increase through demand curve shift. The majority group of those with high rural settlement demand sought agricultural activity as their main motive, due to harsh urban environments aggravated by unstable job market conditions. Subsequently, restriction of income opportunities in rural areas does not produce an entrance barrier for potential rural settlers. Moreover, this argument could be supported by the common trend of those with high rural settlement demand generally tending to have low incomes. Due to such characteristics of concerned groups of rural settlement demand, they tended to react susceptibly to the subsidy provided by the government and local autonomous entities.

A Study on Benefit Sides of Demand Response Customer Baseline with Outdoor Temperature Variable about Load Aggregator (수요관리사업자에 대한 외부온도 변화에 따른 수요반응 CBL의 편익에 관한 연구)

  • Kim, Seong-Cheol;Song, Ha-Na
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2014
  • This paper describes reasonable methods by considering change of outdoor temperature into Customer Baseline Load(CBL) of Demand Resources in Smart Demand Resource Market, which controls peak power demand and maintains reliability of power system. The Smart Demand Resouce Market, which KPX(Korea Power Exchange) implement, is explained and then effects for CBL calculated by considering temperature correction factor are established. Finally, four methods for calculation of CBL are proposed and those results are compared and analyzed.

Estimating the Demand for Domestic Water in Seoul : Appilcation of the Error Correction Model (서울시 생활용수 수요 추정 -오차수정모형을 적용하여-)

  • Kwak, Seung-Jun;Lee, Chung-Ki
    • Environmental and Resource Economics Review
    • /
    • v.11 no.1
    • /
    • pp.81-97
    • /
    • 2002
  • Unlike the existing supply-centered water policy, demand management policy of water has become an increasingly important issue in Korea. This paper attempts to analyse the demand for domestic water in Seoul. We employed Engle-Granger's error correction model(ECM) to deduced the price and income elasticities of the water demand. Particularly, we used accounted water amounts instead of supplied water amounts as representative variable of water demand. The result indicates that ECM set up is appropriate and short-run and long-run price elasticities derived by the model are -0.145 and -1.414. In contrast with other studies, we can conclude that the water demand for the water price is elastic. Besides, we can infer from this result that the water price policy with respect to a decrease of leakage ratio is more effective.

  • PDF

Development of Variable Duty Cycle Control Method for Air Conditioner using Artificial Neural Networks (신경회로망을 이용한 에어컨의 가변주기제어 방법론 개발)

  • Kim, Hyeong-Jung;Doo, Seog-Bae;Shin, Joong-Rin;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.10
    • /
    • pp.399-409
    • /
    • 2006
  • This paper presents a novel method for satisfying the thermal comfort of indoor environment and reducing the summer peak demand power by minimizing the power consumption for an Air-conditioner within a space. Korea Electric Power Corporation (KEPCO) use the fixed duty cycle control method regardless of the indoor thermal environment. However, this method has disadvantages that energy saving depends on the set-point value of the Air-Conditioner and direct load control (DLC) has no net effects on Air-conditioners if the appliance has a lower operating cycle than the fixed duty cycle. In this paper, the variable duty cycle control method is proposed in order to compensate the weakness of conventional fixed duty cycle control method and improve the satisfaction of residents and the reduction of peak demand. The proposed method estimates the predict mean vote (PMV) at the next step with predicted temperature and humidity using the back propagation neural network model. It is possible to reduce the energy consumption by maintaining the Air-conditioner's OFF state when the PMV lies in the thermal comfort range. To verify the effectiveness of the proposed variable duty cycle control method, the case study is performed using the historical data on Sep. 7th, 2001 acquired at a classroom in Seoul and the obtained results are compared with the fixed duty cycle control method.

The Development of Travel Demand Nowcasting Model Based on Travelers' Attention: Focusing on Web Search Traffic Information (여행자 관심 기반 스마트 여행 수요 예측 모형 개발: 웹검색 트래픽 정보를 중심으로)

  • Park, Do-Hyung
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-185
    • /
    • 2017
  • Purpose Recently, there has been an increase in attempts to analyze social phenomena, consumption trends, and consumption behavior through a vast amount of customer data such as web search traffic information and social buzz information in various fields such as flu prediction and real estate price prediction. Internet portal service providers such as google and naver are disclosing web search traffic information of online users as services such as google trends and naver trends. Academic and industry are paying attention to research on information search behavior and utilization of online users based on the web search traffic information. Although there are many studies predicting social phenomena, consumption trends, political polls, etc. based on web search traffic information, it is hard to find the research to explain and predict tourism demand and establish tourism policy using it. In this study, we try to use web search traffic information to explain the tourism demand for major cities in Gangwon-do, the representative tourist area in Korea, and to develop a nowcasting model for the demand. Design/methodology/approach In the first step, the literature review on travel demand and web search traffic was conducted in parallel in two directions. In the second stage, we conducted a qualitative research to confirm the information retrieval behavior of the traveler. In the next step, we extracted the representative tourist cities of Gangwon-do and confirmed which keywords were used for the search. In the fourth step, we collected tourist demand data to be used as a dependent variable and collected web search traffic information of each keyword to be used as an independent variable. In the fifth step, we set up a time series benchmark model, and added the web search traffic information to this model to confirm whether the prediction model improved. In the last stage, we analyze the prediction models that are finally selected as optimal and confirm whether the influence of the keywords on the prediction of travel demand. Findings This study has developed a tourism demand forecasting model of Gangwon-do, a representative tourist destination in Korea, by expanding and applying web search traffic information to tourism demand forecasting. We compared the existing time series model with the benchmarking model and confirmed the superiority of the proposed model. In addition, this study also confirms that web search traffic information has a positive correlation with travel demand and precedes it by one or two months, thereby asserting its suitability as a prediction model. Furthermore, by deriving search keywords that have a significant effect on tourism demand forecast for each city, representative characteristics of each region can be selected.

The effect of temperature on the electricity demand: An empirical investigation (기온이 전력수요에 미치는 영향 분석)

  • Kim, Hye-min;Kim, In-gyum;Park, Ki-Jun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.167-173
    • /
    • 2015
  • This paper attempts to estimate the electricity demand function in Korea with quarterly data of average temperature, GDP and electricity price over the period 2005-2013. We apply lagged dependent variable model and ordinary least square method as a robust approach to estimating the parameters of the electricity demand function. The results show that short-run price and income elasticities of the electricity demand are estimated to be -0.569 and 0.631, respectively. They are statistically significant at the 1% level. Moreover, long-run income and price elasticities are estimated to be 1.589 and -1.433, respectively Both of results reveal that the demand for electricity is price- and income-elastic in the long-run. The relationship between electricity consumption and temperature is supported by many of references as a U-shaped relationship, and the base temperature of electricity demand is about $15.2^{\circ}C$. It is shown that power of explanation and goodness-of-fit statistics are improved in the use of the lagged dependent variable model rather than conventional model.

Determinants of Demand for Residential Settlement in Rural Society Based on Depopulation Classification (과소화유형에 따른 농촌사회 정주수요 분석)

  • Lee, Hee-Chan;Kim, Hyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.15 no.1
    • /
    • pp.61-71
    • /
    • 2009
  • The objective of this research was to analyze the determinants of demand for residential settlements in rural societies. A significant aspect of the demand analysis was to consider depopulation classification as a moderating variable with a view to its role as an essential dividing factor of socioeconomic characteristics and physical environments of the areas of concern. The data collection for analysis was divided according to types of depopulation into the three categories of less developed, stagnated, and developed areas. For the cause and effect analysis between the residential demand and factors of settlement, the ordered probit model was applied. Significant determinants of settlement demand unfolded according to depopulation types. In the case of less developed areas, residential demand was affected significantly by the factors of daily life convenience and public facilities. Key settlement demand determinants of stagnated regions included the aspects of basic natural environment, daily life convenience and education. Meanwhile, key settlement demand determinants for developed areas included education and agriculture economic aspects. The importance-performance analysis was also applied to a set of settlement characteristics of rural communities to figure out the settlement factors requiring urgent endeavor to improve.

Development of the Lumber Demand Prediction Model

  • Kim, Dong-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.601-604
    • /
    • 2006
  • This study compared the accuracy of partial multivariate and vector autoregressive models for lumber demand prediction in Korea. The partial multivariate model has three explanatory variables; own price, construction permit area and dummy. The dummy variable reflected the boom of lumber demand in 1988, and the abrupt decrease in 1998. The VAR model consists of two endogenous variables, lumber demand and construction permit area with one lag. On the other hand, the prediction accuracy was estimated by Root Mean Squared Error. The results showed that the estimation by partial multivariate and vector autoregressive model showed similar explanatory power, and the prediction accuracy was similar in the case of using partial multivariate and vector autoregressive model.

Analysis and Prediction of the Fiberboard Demand using VAR Model (VAR 모형에 의한 섬유판 수요 분석 및 예측)

  • Kim, Dongjun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.284-289
    • /
    • 2009
  • This study estimated the fiberboard demand using VAR and econometric model, and compared the prediction accuracy of the two models. And the variance decomposition and impulse response were analyzed using VAR model, and predicted the fiberboard demand. The VAR model was specified with lagged dependent variable, lagged own price, lagged construction product, dummy. The econometric model was specified with own price, substitute price, construction product, dummy. The dummy variable reflected the abrupt decrease in fiberboard demand in the late 1990's. The results showed that the fiberboard demand prediction can be performed more accurately by VAR model than by econometric model. In the VAR model of fiberboard demand, after twelve months, the construction product change accounts for about fifty percent of variation in the demand, and the own price change accounts for about thirty percent of variation in the demand. On the other hand, the impact of a shock to the construction product is significant for about twelve months on the demand of fiberboard, and the impact of a shock to the own price is significant for about six months on the demand of fiberboard.

Demand Analysis of Fresh-fish in the Urban Communities (도시지역에 있어서 선어의 수요분석 -육류와의 대체관계를 중심으로-)

  • 김수관
    • The Journal of Fisheries Business Administration
    • /
    • v.15 no.1
    • /
    • pp.114-130
    • /
    • 1984
  • The structure of food demand is being changed according to the improvement of living standard. Moreover, the intake of animal protein is stepping up. This paper considers how much fresh-fish is consumed as source of animal protein and what extent fresh-fish have substitutive relation for meat with special reference to the change of income and price of fresh-fish and meat. And it is thought to be important work to estimate demand of fresh-fish in attemps to the prediction of food consume pattern and fishing industries in the future. For this estimation, the substitutive relation of fresh-fish and meat is essentially studied. The main conclusions of this study can be drawn as follows: 1. Fresh-fish and meat have substitutive relation on price axis. By the way, increase in demand of A (fresh-fish which have comparatively low price) can be expected according to the low of it's price against meat, but B (fresh-fish wihich have comparatively middle-high price) have peculiar demand without substitutive relation for meat. 2. Demand of A and B rise according to the income increases. 3. It is not sufficient to explain substutive relation of fresh-fish and meat without income variable. 4. Income increases bring about the more increase in demand of B than A. By the way, price increases bring about the decrease of it's consume expenditure, but A have fundamental demand as the source of animal protein. 5. In future, the intake of animal protein will step up. By the way, meat will occupy the more portion of the source of animal protein than fresh-fish.

  • PDF