• 제목/요약/키워드: Demand Prediction

검색결과 648건 처리시간 0.028초

시스템다이내믹스를 이용한 항공여객 수요예측에 관한 연구 (Forecasting Model of Air Passenger Demand Using System Dynamics)

  • 김형호;전준우;여기태
    • 디지털융복합연구
    • /
    • 제16권5호
    • /
    • pp.137-143
    • /
    • 2018
  • 우리나라의 항공여객 운송실적은 지속적으로 성장하고 있다. 본 연구에서는 우리나라 항공여객 운송 실적의 성장추이를 확인하기 위해 시스템다이내믹스를 활용한 항공여객 수요예측 모델을 제안하였다. 항공여객 수요예측은 항공여객 운송수요를 종속변수로 하고 국제항공유가, GDP 및 환율을 외생변수로 하여 시뮬레이션 하였다. 모델의 정확도는 MAPE와 $R^2$를 이용하여 검증하였고 검증 결과 제안된 예측모델은 정확한 예측모델로 확인되었다. 수요예측 결과 국적 항공사의 항공여객 처리실적은 앞으로도 지속적으로 성장하며, 특히 저비용항공사의 수송 분담률이 크게 증가할 것으로 예측되었다. 향후 한국에 진출해 있는 외국계 항공사들의 내국인 처리 실적 및 국적항공사들의 Alliance 체결에 따른 실적 등을 추가하여 보다 정확한 항공여객 수요예측 모델을 제안하고자 한다.

기후변화와 사회·경제적 요소를 고려한 가정 부문 냉난방 에너지 사용량 변화 예측 (Prediction of Heating and Cooling Energy Consumption in Residential Sector Considering Climate Change and Socio-Economic)

  • 이미진;이동근;박찬;박진한;정태용;김상균;홍성철
    • 환경영향평가
    • /
    • 제24권5호
    • /
    • pp.487-498
    • /
    • 2015
  • 기온상승과 인구 및 GDP 증가의 영향으로 인해 에너지 문제가 발생하고 있다. 이러한 문제에 대응하기 위해 에너지 수요에 대한 예측이 필요하다. 따라서 본 연구는 에너지 수요관리, 특히 전력부하를 유발하는 냉난방 에너지 수요 관리에 도움이 되고자 가정 부문 냉난방 에너지의 미래 사용량을 예측하고자 한다. 에너지 사용량을 산정하는데 있어 서비스 수요의 산출이 필요하다. 따라서 서비스 수요 산정식을 이용하여 이를 먼저 도출하고, AIM/end-use 모델을 이용하여 에너지 사용량을 산정하였다. 산정 결과 냉난방 서비스 수요는 2010년에 비해 2050년에 모두 증가하는 추세를 보였다. 하지만 에너지 사용량에서 난방은 감소하고, 냉방은 증가하는 것으로 예측되었다.

조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측 (Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine)

  • 김수현;선영규;이동구;심이삭;황유민;김현수;김형석;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.127-133
    • /
    • 2019
  • 미래에 스마트 그리드 도입을 위해 전력수요예측은 중요한 연구 분야 중 하나이다. 하지만 전력데이터는 많은 외부적 요소들에 영향을 받기 때문에 예측하기 어렵다. 기존의 전력수요예측 방법들은 가공되지 않은 전력데이터를 그대로 이용하기 때문에 정확도 높은 예측을 하는데 한계가 있어왔다. 본 논문에서는 가공되지 않은 전력데이터를 이용하는 전력수요예측의 문제를 해결하기 위해 확률기반 학습알고리즘을 제안한다. 확률 모델은 전력데이터의 확률적 특성을 분석하기에 적합하다. 제안한 모델의 중기 전력수요예측 성능을 비교하기 위해 신경망 네트워크 중 하나인 순환신경망과 성능 비교를 해보았다. 매사추세츠 대학에서 제공한 전력데이터를 이용하여 성능 비교를 한 결과 본 논문에서 제안한 확률기반 학습알고리즘이 중기 수요예측에 더 좋은 성능을 나타냄을 확인하였다.

오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템 (Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning)

  • 이정휘;김동근
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2021
  • 최근 웹에서 지도(Map)를 이용한 Location based Services 기반의 다양한 위치정보시스템 활용이 점점 확대되고 있으며 에너지 절약을 위한 대안으로 전력 수요 현황을 실시간으로 확인할 수 있는 모니터링 시스템의 필요성이 요구되고 있다. 본 연구에서는 딥러닝과 같은 기계학습을 이용하여 전력 수요 데이터의 특성을 분석하고 예측하는 모듈을 개발하여 지역 단위별 전력 에너지 사용 현황과 예측 추세를 실시간으로 확인할 수 있는 오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요예측 웹 시스템을 개발하였다. 특히 제안한 시스템은 LSTM 딥러닝 모델을 이용하여 지역적으로 전력 수요량과 예측 분석이 실시간으로 가능하고 분석된 정보를 가시화하여 제공한다. 향후 제안된 시스템을 통해 지역별 에너지의 수급 및 예측 현황을 확인하고 분석하는데 활용될 수 있을 뿐만 아니라 다른 산업 에너지에도 적용될 수 있을 것이다.

최적화된 Gradient-Boost를 사용한 서울 자전거 데이터의 결정 요인 예측 (Predicting Determinants of Seoul-Bike Data Using Optimized Gradient-Boost)

  • 김차영;김윤
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.861-866
    • /
    • 2022
  • 서울시에서는 공유 자전거 시스템, "따릉이"를 2015년부터 도입, 운영하여, 교통량 감축과 대기오염 해소를 위해 노력하고 있다. 하지만 공유 자전거 시스템, "따릉이"의 운영전략 미훕으로 인해 많은 문제가 발생하고 있어 이를 해결하고자 다양한 연구들이 제시되고 있다. 이들 연구의 대다수는 수요와 공급의 불균형을 해결하고자 하는 전략적 "자전거 배치"에 집중되어 있으며 또한 이들 중 다수가 날씨나 계절과 같은 특징을 그룹화함으로써 수요를 예측하고 있다. 그리고 이전에는 이들 예측방법이 주로 시계열 분석을 기반으로 하고 있었으나 최근에는 딥러닝/머신러닝으로 수요를 예측하는 연구들이 속속 등장하고 있다. 본 논문에서는 기존에 제시된 다양한 특징들을 기반으로 하면서, 새로운 특징을 발견하고 선택된 특징들의 중요도를 비교, 이를 순서화함으로써, 보다 정확한 수요 예측이 가능함을 보인다. 그리하여, 우리는 기존의 딥러닝/머신러닝 및 시계열 분석을 그대로 사용하면서 비교적 정확한 결정계수를 획득하고 이를 이용해 개선된 수요예측이 가능하도록 한다.

머신러닝 기반 수소 충전소 에너지 수요 예측 모델 (Machine Learning-based hydrogen charging station energy demand prediction model)

  • 황민우;하예림;박상욱
    • 인터넷정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.47-56
    • /
    • 2023
  • 수소 에너지는 높은 에너지 효율로 열과 전기를 생산하면서도 온실가스와 미세먼지 등 유해물질 배출이 없는 친환경 에너지로서, 전 세계적으로 탄소중립으로의 전환을 위한 핵심으로 주목받고 있다. 특히 스마트 수소에너지는 경제적이고 지속 가능하며, 안전한 미래 스마트 수소에너지 서비스로써 수소 에너지의 기반 시설이 디지털로 통합되어 '데이터' 기반으로 안정적으로 운영되는 서비스를 의미한다. 본 논문에서는 데이터 기반 수소 충전소 수요예측 모델 구현을 위해 강원도 내 설치되어 있는 수소 충전소 3곳(춘천, 속초, 평창)을 선정, 수소 충전소의 수요공급 데이터를 확보하였고, 머신러닝 및 딥러닝 알고리즘 7개를 선정하여 총 27종 입력 데이터(기상데이터+수소 충전소 수요량)로 모델을 학습하였고, 평균 제곱근 오차(RMSE)로 모델을 평가하였다. 이를 통해 본 논문에서는 최적의 수소 에너지 수요공급을 위한 머신러닝 기반 수소 충전소 에너지 수요 예측 모델을 제안한다.

Quantum Computing Impact on SCM and Hotel Performance

  • Adhikari, Binaya;Chang, Byeong-Yun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.1-6
    • /
    • 2021
  • For competitive hotel business, the hotel must have a sound prediction capability to balance the demand and supply of hospitality products. To have a sound prediction capability in the hotel, it should be prepared to be equipped with a new technology such as quantum computing. The quantum computing is a brand new cutting-edge technology. It will change hotel business and even the whole world too. Therefore, we study the impact of quantum computing on supply chain management (SCM) and hotel performance. Toward the goal we have developed the research model including six constructs: quantum (computing) prediction, communication, supplier relationship, service quality, non-financial performance, and financial performance. The result of the study shows a significant influence of quantum (computing) prediction on hotel performance through the mediating role of SCM in the hotel. Quantum prediction is highly significant in enhancing the SCM in the hotel. However, the direct effect between the quantum prediction and hotel performance is not significant. The finding indicates that hotels which would install the quantum computing technology and utilize the quantum prediction could hugely benefit from the performance improvement.

현장 굴진자료 분석에 의한 TBM 성능예측모델의 적용성 평가 (Evaluation of the applicability of TBM performance prediction models based on field data)

  • 오기열;장수호;김상환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.803-812
    • /
    • 2008
  • Along with the increasing demand for automatic and mechanical tunnel excavation methods in Korea, the Tunnel Boring Machine (TBM) method of tunnel excavation has become increasingly popular. However, in spite of this rising demand, few studies have been performed on the TBM method, in Korea. For this reason, this study focused on evaluation of the applicability of TBM performance prediction models based on field data in order to contribute to the basic and essential parts of TBM designation and the TBM method of tunnel excavation in Korea. These rock properties can be defined as the mechanical and physical factors of rock that have an influence on a disc cutter's ability to cut rock, and provide information for the evaluation of the applicability of field data. Based on outcomes from these tests, applicability of the prediction model was evaluated and the predicted performance of a TBM was compared with real field data obtained from four different TBM construction sites in Korea.

  • PDF

건축물 내 전기설비 이상 유무 진단 및 예측기법 개발 (Diagnosis of a trouble existence and development of prediction method for electrical equipment inside a building)

  • 김영달;김효진;김대식;김재훈;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 전기설비
    • /
    • pp.31-33
    • /
    • 2005
  • The accelerating of industrial development causes electricity demand to increase. By that power equipments need high power, multi function and intelligence. Also consumers demand for guarantee power supplying of good quality and reasonable operating equipment. Also they require for reliance and stabilization of power facility. Therefore preventive maintenance of electric installation must be developed and improvement of domestic technical level is needed in the maintenance management of equipment. The diagnosis of trouble existence is technique that compares steady state with unusual condition, whereas the prediction technique makes a diagnosis of remaining equipments life. It is difficult for us to diagnose trouble existence of electric installation and to develop prediction method in building because of a wide scope for electric installation in building. And in this paper we will investigate diagnosis and prediction method for only switch part of electric installation in building.

  • PDF

에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측 (Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy)

  • 정호철;선영규;이동구;김수현;황유민;심이삭;오상근;송승호;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.134-142
    • /
    • 2019
  • 에너지인터넷 기술의 발전과 다양한 전자기기의 보급으로 에너지소비량이 패턴이 다양해짐에 따라 수요예측에 대한 신뢰도가 감소하고 있어 발전량 최적화 및 전력공급 안정화에 문제를 야기하고 있다. 본 연구에서는 고신뢰성을 갖는 수요예측을 위해 딥러닝 기법인 Convolution neural network(CNN)과 Bidirectional Long Short-Term Memory(BLSTM)을 융합한 1Dimention-Convolution and Bidirectional LSTM(1D-ConvBLSTM)을 제안하고, 제안한 기법을 활용하여 시계열 에너지소비량대한 소비패턴을 효과적으로 추출한다. 실험 결과에서는 다양한 반복학습 횟수와 feature map에 대해서 수요를 예측하고 적은 반복학습 횟수로도 테스트 데이터의 그래프 개형을 예측하는 것을 검증한다.