• Title/Summary/Keyword: Demand Forecasting Model

Search Result 461, Processing Time 0.031 seconds

Development of a Forecasting Model for University Food Services (대학 급식소의 식수예측 모델 개발)

  • 정라나;양일선;백승희
    • Korean Journal of Community Nutrition
    • /
    • v.8 no.6
    • /
    • pp.910-918
    • /
    • 2003
  • The purposes of this study were to develop a model for university foodservices and to provide management strategies for reducing costs, and increasing productivity and customer satisfaction. The results of this study were as follows : 1) The demands in university food services varied depending on the time series. A fixed pattern was discovered for specific times of the month and semesters. The demand tended to constantly decrease from the beginning of a specific semester to the end, from March to June and from September to December. Moreover, the demand was higher during the first semester than the second semester, within school term than during vacation periods, and during the summer vacation than the winter. 2) Pearson's simple correlation was done between actual customer demand and the factors relating to forecasting the demand. There was a high level of correlation between the actual demand and the demand that had occurred in the previous weeks. 3) By applying the stepwise multiple linear regression analysis to two different university food services providing multiple menu items, a model was developed in terms of four different time series(first semester, second semester, summer vacation, and winter vacation). Customer preference for specific menu items was found to be the most important factor to be considered in forecasting the demand.

Development of the Demand Forecasting and Product Recommendation Method to Support the Small and Medium Distribution Companies based on the Product Recategorization (중소유통기업지원을 위한 상품 카테고리 재분류 기반의 수요예측 및 상품추천 방법론 개발)

  • Sangil Lee;Yeong-WoongYu;Dong-Gil Na
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.155-167
    • /
    • 2024
  • Distribution and logistics industries contribute some of the biggest GDP(gross domestic product) in South Korea and the number of related companies are quarter of the total number of industries in the country. The number of retail tech companies are quickly increased due to the acceleration of the online and untact shopping trend. Furthermore, major distribution and logistics companies try to achieve integrated data management with the fulfillment process. In contrast, small and medium distribution companies still lack of the capacity and ability to develop digital innovation and smartization. Therefore, in this paper, a deep learning-based demand forecasting & recommendation model is proposed to improve business competitiveness. The proposed model is developed based on real sales transaction data to predict future demand for each product. The proposed model consists of six deep learning models, which are MLP(multi-layers perception), CNN(convolution neural network), RNN(recurrent neural network), LSTM(long short term memory), Conv1D-BiLSTM(convolution-long short term memory) for demand forecasting and collaborative filtering for the recommendation. Each model provides the best prediction result for each product and recommendation model can recommend best sales product among companies own sales list as well as competitor's item list. The proposed demand forecasting model is expected to improve the competitiveness of the small and medium-sized distribution and logistics industry.

A Study of the Optimal Procurement to Determine the Quantities of Spare Parts Under the Budget Constraint (예산제약하에서 수리부속 최적조달요구량 산정 연구)

  • Lee, Sang-Jin;Kim, Seung-Chul;Hwang, Ji-Hyun
    • Korean Management Science Review
    • /
    • v.27 no.2
    • /
    • pp.31-44
    • /
    • 2010
  • It is very important to forecast demand and determine the optimal procurement quantities of spare parts. The Army has been forecasting demand not with actual usage of spare parts but with request quantities. However, the Army could not purchase all of forecasted demand quantities due to budget limit. Thus, the procurement quantities depend on the item managers' intuition and their meetings. The system currently used contains many problems. This study suggests a new determination procedure; 1) forecasting demand method based on actual usage, 2) determining procurement method through LP model with budge and other constraints. The newly determined quantities of spare parts is verified in the simulation model, that represents the real operational and maintenance situation to measure the operational availability. The result shows that the new forecasting method with actual usage improves the operational availability. Also, the procurement determination with LP improves the operational availability as well.

A System Dynamics Model for Basic Material Price and Fare Analysis and Forecasting (시스템 시뮬레이션을 통한 원자재 가격 및 운송 운임 모델)

  • Jung, Jae-Heon
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.61-76
    • /
    • 2009
  • We try to use system dynamics to forecast the demand/supply and price, also transportation fare for iron ore. Iron ore is very important mineral resource for industrial production. The structure for this system dynamics shows non-linear pattern and we anticipated the system dynamic method will catch this non-linear reality better than the regression analysis. Our model is calibrated and tested for the past 6 year monthly data (2003-2008) and used for next 6 year monthly data(2008-2013) forecasting. The test results show that our system dynamics approach fits the real data with higher accuracy than the regression one. And we have run the simulations for scenarios made by possible future changes in demand or supply and fare related variables. This simulations imply some meaningful price and fare change patterns.

  • PDF

Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding (원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델)

  • Kim, Kwang Ho;Chang, Byunghoon;Choi, Hwang Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.852-857
    • /
    • 2019
  • In order to manage the demand resources of project participants and to provide appropriate strategies in the virtual power plant's power trading platform for consumers or operators who want to participate in the distributed resource collective trading market, it is very important to forecast the next day's demand of individual participants and the overall system's electricity demand. This paper developed a power demand forecasting model for the next day. For the model, we used LSTM algorithm of deep learning technique in consideration of time series characteristics of power demand forecasting data, and new scheme is applied by applying one-hot encoding method to input/output values such as power demand. In the performance evaluation for comparing the general DNN with our LSTM forecasting model, both model showed 4.50 and 1.89 of root mean square error, respectively, and our LSTM model showed high prediction accuracy.

Demand Forecasting with Discrete Choice Model Based on Technological Forecasting

  • 김원준;이정동;김태유
    • Proceedings of the Technology Innovation Conference
    • /
    • 2003.02a
    • /
    • pp.173-190
    • /
    • 2003
  • Demand forecasting is essential in establishing national and corporate strategy as well as the management of their resource. We forecast demand for multi-generation product using discrete choice model combining diffusion model The discrete choice model generally captures consumers'valuation of the product's qualify in the framework of a cross-sectional analysis. We incorporate diffusion effects into a discrete choice model in order to capture the dynamics of demand for multi-generation products. As an empirical application, we forecast demand for worldwide DRAM (dynamic random access memory) and each of its generations from 1999 to 2005. In so doing, we use the method of 'Technological Forecasting'for DRAM Density and Price of the generations based on the Moore's law and learning by doing, respectively. Since we perform our analysis at the market level, we adopt the inversion routine in using the discrete choice model and find that our model performs well in explaining the current market situation, and also in forecasting new product diffusion in multi-generation product markets.

  • PDF

A Model for the Forecasting Methodology of Radio Spectrum Demand (국내 전파자원 수요예측 모형)

  • 장희선;신현철;김한주
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.94-102
    • /
    • 2002
  • In this paper, we present a forecasting model for the spectrum demand which will be used for the mid/long-term spectrum forecasting in Korea. In specific, we present the bottom-up model with considering the customer not the previous top-down method. The Proposed model consists of service definition. classification of service characteristics, drawing representative service characteristic , forecasting of service demand, mapping with spectrum resource, verification and spectrum forecasting. The carried actions in each step is described in detail. For the validation of the model an example for the PCS environments is shown. traverse stepping stones for a variety of legitimate reasons.

  • PDF

Demand Forecasting for B2B Electronic Products : The Case of Personal Computer Market (B2B 전자제품 수요예측 모형 : PC시장 사례)

  • Moon, Jeongwoong;Chang, Namsik;Cho, Wooje
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.185-197
    • /
    • 2015
  • As the uncertainty of demand in B2B electronics market has increased, firms need a strong method to estimate the market demand. An accurate prediction on the market demand is crucial for a firm not to overproduce or underproduce its goods, which would influence the performance of the firm. However, it is complicated to estimate the demand in a B2B market, particularly for the private sector, because firms are very diverse in terms of size, industry, and types of business. This study proposes both qualitative and quantitative demand forecasting approaches for B2B PC products. Four different measures for predicting PC products in B2B market with consideration of the different PC uses-personal work, common work, promotion, and welfare-are developed as the qualitative model's input variables. These measures are verified by survey data collected from experts in 139 firms, and can be applied when individual firms estimate the demand of PC goods in a B2B market. As the quantitative approach, the multiple regression model is proposed and it includes variables of region, type of industry, and size of the firm. The regression model can be applied when the aggregated demand for overall domestic PC market needs to be estimated.

An Study of Demand Forecasting Methodology Based on Hype Cycle: The Case Study on Hybrid Cars (기대주기 분석을 활용한 수요예측 연구: 하이브리드 자동차의 사례를 중심으로)

  • Jun, Seung-Pyo
    • Journal of Korea Technology Innovation Society
    • /
    • v.14 no.spc
    • /
    • pp.1232-1255
    • /
    • 2011
  • This paper proposes a model for demand forecasting that will require less effort in the process of utilizing the new product diffusion model while also allowing for more objective and timely application. Drawing upon the theoretical foundation provided by the hype cycle model and the consumer adoption model, this proposed model makes it possible to estimate the maximum market potential based solely on bibliometrics and the scale of the early market, thereby presenting a method for supplying the major parameters required for the Bass model. Upon analyzing the forecasting ability of this model by applying it to the case of the hybrid car market, the model was confirmed to be capable of successfully forecasting results similar in scale to the market potential deduced through various other objective sources of information, thus underscoring the potentials of utilizing this model. Moreover, even the hype cycle or the life cycle can be estimated through direct linkage with bibliometrics and the Bass model. In cases where the hype cycles of other models have been observed, the forecasting ability of this model was demonstrated through simple case studies. Since this proposed model yields a maximum market potential that can also be applied directly to other growth curve models, the model presented in the following paper provides new directions in the endeavor to forecast technology diffusion and identify promising technologies through bibliometrics.

  • PDF

Development of Rainfall-Runoff forecasting System (유역 유출 예측 시스템 개발)

  • Hwang, Man Ha;Maeng, Sung Jin;Ko, Ick Hwan;Ryoo, So Ra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF