• 제목/요약/키워드: Delay propagation

Search Result 535, Processing Time 0.029 seconds

Optimizing of BCJR Equalization with BCJR Decoder in the Underwater Communication (수중통신에서 최적의 BCJR 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won;Park, Tae-Doo;Lee, Dong-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2094-2100
    • /
    • 2014
  • The performance of underwater acoustic communication system is sensitive to the inter-symbol interference due to delay spread develop of multipath signal propagation. Thus, it is necessary technique of equalizer and channel code to eliminate inter-symbol interference. In this paper, underwater acoustic communication system were analyzed by experiment using these techniques on the Kyeong-chun lake, Munkyeong City. Based on the results of experiment, we confirmed that the performance of the proposed iterative BCJR equalization method is improved by increasing the number of iterations.

PMIPv6 Global Handover Mechanism using Multicast Source Based Forwarding (멀티캐스트 소스기반 포워딩을 이용한 PMIPv6 글로벌 핸드오버 메커니즘)

  • Choi, Hoan-Suk;Lee, Jang-Hyun;Rhee, Woo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.745-759
    • /
    • 2011
  • In this paper, we propose the global handover mechanism that is able to provide the unlimited range of next-generation multimedia mobile services in an integrated environment. This mechanism consists of a multicast source based forwarding scheme and a global session management scheme. Global session management scheme provides LMA session information management, global mobility and route optimization. Multicast source based forwarding scheme delivers data between previously attached LMA and newly attached LMA without packet loss. In addition, this scheme removes the redundancy of buffered data. We present a performance evaluation and features analysis by the simulations using the ns-2. Global session management scheme has a less handover latency, propagation delay and signaling cost than the conventional methods. Multicast source based forwarding scheme can deliver buffer data without loss and it has less buffer size than conventional method.

Efficient Channel Estimation and Packet Scheduling Scheme for DVB-S2 ACM Systems (DVB-S2 ACM 시스템을 위한 효율적인 채널 예측 및 패킷 스케줄링 기법)

  • Kang, Dong-Bae;Park, Man-Kyu;Chang, Dae-Ig;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.65-74
    • /
    • 2012
  • The QoS guarantee for the forward link in satellite communication networks is very important because there are a variety of packets with multiplexing. Especially, the packets are processed depending on the available bandwidth in satellite network changing the wireless channel state in accordance with weather condition. The DVB-S2 increases the transmission efficiency by applying the adaptive coding and modulation (ACM) techniques as a countermeasure of rain attenuations. However, the channel estimation algorithm is required to support the ACM techniques that select the MODCOD values depending on the feedback data transmitted by RCSTs(Return Channel via Satellite Terminal) because satellite communication networks have a long propagation delay. In this paper, we proposed the channel estimation algorithm using rain attenuation values and reference data and the packet scheduling scheme to support the QoS and fairness. As a result of performance evaluation, we showed that proposed algorithm exactly predicts the channel conditions and supports bandwidth fairness to the individual RCST and guarantees QoS for user traffics.

Design of a Virtual Machine based on the Lua interpreter for the On-Board Control Procedure Execution Environment (탑재운영절차서 실행환경을 위한 Lua 인터프리터 기반의 가상머신 설계)

  • Kang, Sooyeon;Koo, Cheolhea;Ju, Gwanghyeok;Park, Sihyeong;Kim, Hyungshin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.127-133
    • /
    • 2014
  • In this paper, we present the design, functions and performance analysis of the virtual machine (VM) based on the Lua interpreter for On-Board Control Procedure Execution Environment (OEE). The development of the OEE has been required in order to operate the lunar explorer mission autonomously which is planned by Korea Aerospace Research Institute (KARI) autonomously. The concept of On-Board Control Procedure (OBCP) is already being applied to the deep space missions with a long propagation delay and a limited data transmission capacity since it ensure he autonomy of the mission without the ground intervention. The interpreter is the execution engine in the VM and it interpreters high-level programming codes line by line and executes the VM instructions. So the execution speed is very more slower than that of natively compiled codes. In order to overcome it, we design and implement OEE using register-based Lua interpreter for execution engine in OEE. We present experimental results on a range of additional hardware configurations such as usages of cache and floating point unit. We expect those to utilized to the OBCP scheduling policy and the system with Lua interpreter.

Hybrid MAC Protocol Design for an Underwater Acoustic Network (수중음향통신망을 위한 하이브리드 MAC 프로토콜 설계)

  • Park, Jong-Won;Ko, Hak-Lim;Cho, A-Ra;Yun, Chang-Ho;Choi, Young-Chol;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2088-2096
    • /
    • 2009
  • This paper deals with hybrid MAC protocol design for underwater acoustic networks. The proposed MAC protocol has the cluster structure with a master node and slave nodes, and the hybrid network structure that combines a contention free period based on TDMA(Time Division Multiple Access) with a contention period. The suggested MAC protocol has a beacon packet for supervising network, a guard period between time slots for packet collision, time tag for estimation of propagation delay with a master node, the time synchronization of nodes, entering and leaving of network, and the communication method among nodes. In this paper, we adapt the proposed hybrid MAC protocol to AUV network, that is the representative mobile device of underwater acoustic network, and verify this protocol is applicable in real underwater acoustic network environment.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Carrier Phase Based Cycle Slip Detection and Identification Algorithm for the Integrity Monitoring of Reference Stations

  • Su-Kyung Kim;Sung Chun Bu;Chulsoo Lee;Beomsoo Kim;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In order to ensure the high-integrity of reference stations of satellite navigation system, cycle slip should be precisely monitored and compensated. In this paper, we proposed a cycle slip algorithm for the integrity monitoring of the reference stations. Unlike the legacy method using the Melbourne-Wübbena (MW) combination and ionosphere combination, the proposed algorithm is based on ionosphere combination only, which uses high precision carrier phase observations without pseudorange observations. Two independent and complementary ionosphere combinations, Ionospheric Negative (IN) and Ionospheric Positive (IP), were adopted to avoid insensitive cycle slip pairs. In addition, a second-order time difference was applied to the IN and IP combinations to minimize the influence of ionospheric and tropospheric delay even under severe atmosphere conditions. Then, the cycle slip was detected by the thresholds determined based on error propagation rules, and the cycle slip was identified through weighted least square method. The performance of the proposed cycle slip algorithm was validated with the 1 Hz dual-frequency carrier phase data collected under the difference levels of ionospheric activities. For this experiment, 15 insensitive cycle slip pairs were intentionally inserted into the raw carrier phase observations, which is difficult to be detected with the traditional cycle slip approach. The results indicate that the proposed approach can successfully detect and compensate all of the inserted cycle slip pairs regardless of ionospheric activity. As a consequence, the proposed cycle slip algorithm is confirmed to be suitable for the reference station where real time high-integrity monitoring is crucial.

The MCSTOP Algorithm about the Minimum Cost Spanning Tree and the Optimum Path Generation for the Multicasting Path Assignment (최적 경로 생성 및 최소 비용 신장 트리를 이용한 멀티캐스트 경로 배정 알고리즘 : MCSTOP)

  • Park, Moon-Sung;Kim, Jin-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.4
    • /
    • pp.1033-1043
    • /
    • 1998
  • In this paper, we present an improved multicasting path assignment algorithm based on the minimum cost spanning tree. In the method presented in this paper, a multicasting path is assigned preferentially when a node to be received is found among the next degree nodes of the searching node in the multicasting path assignment of the constrained steiner tree (CST). If nodes of the legacy group exist between nodes of the new group, a new path among the nodes of new group is assigned as long as the nodes may be excluded from the new multicasting path assignment taking into consideration characteristics of nodes in the legacy group. In assigning the multicasting path additionally, where the source and destination nodes which can be set for the new multicasting path exist in the domain of identical network (local area network) and conditions for degree constraint are satisfied, a method of producing and assigning a new multicasting path is used. The results of comparison of CST with MCSTOP, MCSTOp algorithm enhanced performance capabilities about the communication cost, the propagation delay, and the computation time for the multicasting assignment paths more than CST algorithm. Further to this, research activities need study for the application of the international standard protocol(multicasting path assignment technology in the multipoint communication service (MCS) of the ITU-T T.120).

  • PDF

A Mismatch-Insensitive 12b 60MS/s 0.18um CMOS Flash-SAR ADC (소자 부정합에 덜 민감한 12비트 60MS/s 0.18um CMOS Flash-SAR ADC)

  • Byun, Jae-Hyeok;Kim, Won-Kang;Park, Jun-Sang;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.17-26
    • /
    • 2016
  • This work proposes a 12b 60MS/s 0.18um CMOS Flash-SAR ADC for various systems such as wireless communications and portable video processing systems. The proposed Flash-SAR ADC alleviates the weakness of a conventional SAR ADC that the operation speed proportionally increases with a resolution by deciding upper 4bits first with a high-speed flash ADC before deciding lower 9bits with a low-power SAR ADC. The proposed ADC removes a sampling-time mismatch by using the C-R DAC in the SAR ADC as the combined sampling network instead of a T/H circuit which restricts a high speed operation. An interpolation technique implemented in the flash ADC halves the required number of pre-amplifiers, while a switched-bias power reduction scheme minimizes the power consumption of the flash ADC during the SAR operation. The TSPC based D-flip flop in the SAR logic for high-speed operation reduces the propagation delay by 55% and the required number of transistors by half compared to the conventional static D-flip flop. The prototype ADC in a 0.18um CMOS demonstrates a measured DNL and INL within 1.33LSB and 1.90LSB, with a maximum SNDR and SFDR of 58.27dB and 69.29dB at 60MS/s, respectively. The ADC occupies an active die area of $0.54mm^2$ and consumes 5.4mW at a 1.8V supply.

Design of High-Speed Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 고속 병렬 승산기의 설계)

  • Seong Hyeon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.36-43
    • /
    • 2006
  • In this paper we present a new high-speed parallel multiplier for Performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the MOD operation part to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of MOD operation part have two AND gates and two XOR gates. Using these MOD operation parts, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the MOD operation parts with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI. Also, since this circuit has a low propagation delay time generated by the gates during operating process because of not use the memory elements in the inside of multiplier circuit, this multiplier circuit realizes a high-speed operation.