• Title/Summary/Keyword: Delay attack

Search Result 105, Processing Time 0.033 seconds

Maximal overlap discrete wavelet transform-based power trace alignment algorithm against random delay countermeasure

  • Paramasivam, Saravanan;PL, Srividhyaa Alamelu;Sathyamoorthi, Prashanth
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.512-523
    • /
    • 2022
  • Random delay countermeasures introduce random delays into the execution flow to break the synchronization and increase the complexity of the side channel attack. A novel method for attacking devices with random delay countermeasures has been proposed by using a maximal overlap discrete wavelet transform (MODWT)-based power trace alignment algorithm. Firstly, the random delay in the power traces is sensitized using MODWT to the captured power traces. Secondly, it is detected using the proposed random delay detection algorithm. Thirdly, random delays are removed by circular shifting in the wavelet domain, and finally, the power analysis attack is successfully mounted in the wavelet domain. Experimental validation of the proposed method with the National Institute of Standards and Technology certified Advanced Encryption Standard-128 cryptographic algorithm and the SAKURA-G platform showed a 7.5× reduction in measurements to disclosure and a 3.14× improvement in maximum correlation value when compared with similar works in the literature.

Detection of Delay Attack in IoT Automation System (IoT 자동화 시스템의 지연 공격 탐지)

  • Youngduk Kim;Wonsuk Choi;Dong hoon Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.5
    • /
    • pp.787-799
    • /
    • 2023
  • As IoT devices are widely used at home, IoT automation system that is integrate IoT devices for users' demand are gaining populrity. There is automation rule in IoT automation system that is collecting event and command action. But attacker delay the packet and make time that real state is inconsistent with state recongnized by the system. During the time, the system does not work correctly by predefined automation rule. There is proposed some detection method for delay attack, they have limitations for application to IoT systems that are sensitive to traffic volume and battery consumption. This paper proposes a practical packet delay attack detection technique that can be applied to IoT systems. The proposal scheme in this paper can recognize that, for example, when a sensor transmits an message, an broadcast packet notifying the transmission of a message is sent to the Server recognized that event has occurred. For evaluation purposes, an IoT system implemented using Raspberry Pi was configured, and it was demonstrated that the system can detect packet delay attacks within an average of 2.2 sec. The experimental results showed a power consumption Overhead of an average of 2.5 mA per second and a traffic Overhead of 15%. We demonstrate that our method can detect delay attack efficiently compared to preciously proposed method.

Effective traffic analysis in DDos attack (DDos 공격에서 효율적인 트래픽 분석)

  • 구향옥;백순화;오창석
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.268-272
    • /
    • 2004
  • Recently most of hacking attack are either DDos attack or worm attack. However detection algorithms against those attacks are insufficient. In this paper, we propose a method which is able to detect attack traffic very efficiently by reducing traffic overhead. In this scheme, network traffics are collected using SNMP and classified. if they are identified as normal traffic, traffic analysis delay timer is started to reduce traffic overhead.

  • PDF

Missile Autopilot Design for Agile Turn Using Time Delay Control with Nonlinear Observer

  • Lee, Chang-Hun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.266-273
    • /
    • 2011
  • This paper deals with missile autopilot design for agile turn phase in air-to-air engagement scenarios. To attain a fast response, angle-of-attack (AOA) is adopted for an autopilot command structure. Since a high operational AOA is generally required during the agile turn phase, dealing with the aerodynamic uncertainties can be a challenge for autopilot design. As a remedy, a new controller design method based on robust nonlinear control methodology such as time delay control is proposed in this paper. Nonlinear observer is also proposed to estimate the AOA in the presence of the model uncertainties. The performance of the proposed controller with variation of the aerodynamic coefficients is investigated through numerical simulations.

An SDN based hopping multicast communication against DoS attack

  • Zhao, Zheng;Liu, Fenlin;Gong, Daofu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2196-2218
    • /
    • 2017
  • Multicast communication has been widely used in the Internet. However, multicast communication is vulnerable to DoS attack due to static router configuration. In this paper, HMC, a hopping multicast communication method based on SDN, is proposed to tackle this problem. HMC changes the multicast tree periodically and makes it difficult for the attackers to launch an accurate attack. It also decreases the probability of multicast communication being attacked by DoS and in the meanwhile, the QoS constrains are not violated. In this research, the routing problem of HMC is proven to be NP-complete and a heuristic algorithm is proposed to solve it. Experiments show that HMC has the ability to resist DoS attack on multicast route effectively. Theoretically, the multicast compromised probability can drop more than 0.6 when HMC is adopt. In addition, experiments demonstrate that HMC achieves shorter average multicast delay and better robustness compared with traditional method, and more importantly, it better defends DoS attack.

Behavior based Routing Misbehavior Detection in Wireless Sensor Networks

  • Terence, Sebastian;Purushothaman, Geethanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5354-5369
    • /
    • 2019
  • Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.

Countermeasure against MITM attack Integrity Violation in a BLE Network (BLE 네트워크에서 무결성 침해 중간자 공격에 대한 대응기법)

  • Han, Hyegyeon;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.221-236
    • /
    • 2022
  • BLE protocol prevents MITM attacks with user interaction through some input/output devices such as keyboard or display. Therefore, If it use a device which has no input/output facility, it can be vulnerable to MITM attack. If messages to be sent to a control device is forged by MITM attack, the device can be abnormally operated by malicious attack from attacker. Therefore, we describes a scenario which has the vulnerabilities of the BLE network in this paper and propose countermeasure method against MITM attacks integrity violations. Its mechanism provides data confidentiality and integrity with MD5 and security key distribution of Diffie Helman's method. In order to verify the effectiveness of the countermeasure method proposed in this paper, we have conducted the experiments. ​As experiments, the message was sent 200 times and all of them successfully detected whether there was MITM attack or not. In addition, it took at most about 4.2ms delay time with proposed countermeasure method between devices even attacking was going on. It is expected that more secure data transmission can be achieved between IoT devices on a BLE network through the method proposed.

Routing Table Protection From an Attack to Falsify Hop Count in Mobile Ad-hoc Networks (모바일 애드 혹 네트워크(Mobile Ad-hoc Networks)에서 홉 카운트 변조 공격으로부터의 라우팅 테이블 보안)

  • Kim, Jin-Hee;Lee, Jae-Hyun;Kwon, Kyung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.43-52
    • /
    • 2008
  • The AODV routing algorithm in a mobile ad-hoc networks broadcasts RREQ packet to find a route from a source to a destination. An attacker node may intercept a RREQ packet and attack by falsifying a field in that packet. In this paper, we propose a simply modified method which can protect a routing table from an attack to falsify the hop count field in the RREQ packet. When establishing a connection between a source and a destination, we update routing table of each node on the connection based on minimum delay instead of minimum hop count. By doing this, we can protect routing table from an attack to falsify a hop count Our simulation is implemented in Network Simulator(NS-2). We analyze how an attacker affects the mobile ad-hoc networks. The result of the simulation shows that the proposed mechanism transfers a data securely.

APT attacks and Countermeasures (APT 공격과 대응 방안 연구)

  • Han, Kun-Hee
    • Journal of Convergence Society for SMB
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 2015
  • The APT attacks are hackers created a variety of security threats will continue to attack applied to the network of a particular company or organization. It referred to as intelligent sustained attack. After securing your PC after a particular organization's internal staff access to internal server or database through the PC or remove and destroy the confidential information. The APT attack is so large, there are two zero-day attacks and rootkits. APT is a process of penetration attack, search, acquisition, and is divided into outlet Step 4. It was defined in two ways how you can respond to APT through the process. Technical descriptions were divided into ways to delay the attacker's malicious code attacks time and plan for attacks to be detected and removed through.

  • PDF

Performance of a hydrofoil operating close to a free surface over a range of angles of attack

  • Ni, Zao;Dhanak, Manhar;Su, Tsung-chow
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Performance of a NACA 634-021 hydrofoil in motion under and in close proximity of a free surface for a large range of angles of attack is studied. Lift and drag coefficients of the hydrofoil at different submergence depths are investigated both numerically and experimentally, for 0° ≤ AoA ≤ 30° at a Reynolds number of 105. The results of the numerical study are in good agreement with the experimental results. The agreement confirms the new finding that for a submerged hydrofoil operating at high angles of attack close to a free surface, the interaction between the hydrofoil-motion induced waves on the free surface and the hydrofoil results in mitigation of the flow separation characteristics on the suction side of the foil and delay in stall, and improvement in hydrofoil performance. In comparing with a baseline case, results suggest a 55% increase in maximum lift coefficient and 90% average improvement in performance for, based on the lift-to-drag ratio, but it is also observed significant decrease of lift-to-drag ratio at lower angles of attack. Flow details obtained from combined finite volume and volume of fluid numerical methods provide insight into the underlying enhancement mechanism, involving interaction between the hydrofoil and the free surface.