• Title/Summary/Keyword: Delay Analysis Technique

Search Result 241, Processing Time 0.026 seconds

A Study on the Power System Control and Monitoring Technique Using CAN (CAN을 이용한 발전계통의 제어 및 모니터링 기법 연구)

  • Jung, Joon-Hong;Choi, Soo-Young;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.268-276
    • /
    • 2003
  • In this paper, we present a new control and monitoring technique for a power system using CAN(Controller Area Network). Feedback control systems having co'ntrol loops closed through a network(i.e. Ethernet, ControlNet, CAN) are called NCSs(Networked Control Systems). The major problem of NCSs is the variation of stability property according to time delay including network-induced delay and computation delay in nodes. We present a new stability analysis method of NCSs with time delay exploiting a state-space model of LTI(Linear Time Invariant) interconnected systems. The proposed method can determine a proper sampling period of NCSs that preserves stability performance even in NCSs with a dynamic controller. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to NCSs for a power system. The results of the experiment validate effectiveness of our control and monitoring technique for a power system.

Timing Analysis by Concurrent Event Propagation (병렬 사건전파 방식에 의한 타이밍 분석)

  • Han, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1344-1348
    • /
    • 1999
  • This paper proposes concurrent event propagation technique for timing analysis. The technique makes it possible to find several input vectors and sensitizable paths at the same time. The concurrent event propagation technique is based on the event driven simulation and the timing analysis technique with boolean equations. The technique propagates as many events as possible at the same time while preventing propagation of boolean terms which do not sensitize paths. Since events do not propagate through false paths, the longest path which successfully propagates events to one of the primary outputs is one of the longest sensitizable paths. The technique can speed up timing analysis by unifying path sensitization and maximum delay calculation.

  • PDF

Performance Analysis of Demand Assigned Technique for the Multimedia Services via OBP Satellite (OBP(On-Board Processing) 위성의 멀티미디어 서비스를 위한 요구할당 방식의 성능 분석)

  • 김덕년
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8B
    • /
    • pp.730-738
    • /
    • 2004
  • In this paper, System performance parameters such as throughput, blocking probability and delay have been analyzed and expressed as a function of demanding traffic and service termination, probability, and we centers our discussion at particular downlink port of satellite switch which is capable of switching the individual spot beam and processing the information signals in the packet satellite communications with demand assigned multiple access technique. Delay versus throughput as a function of traffic parameters with several service termination probability can be derived via mathematical formulation and the relative differences of transmission delay is also compared.

MEAN SQUARE EXPONENTIAL DISSIPATIVITY OF SINGULARLY PERTURBED STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

  • Xu, Liguang;Ma, Zhixia;Hu, Hongxiao
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.205-212
    • /
    • 2014
  • This paper investigates mean square exponential dissipativity of singularly perturbed stochastic delay differential equations. The L-operator delay differential inequality and stochastic analysis technique are used to establish sufficient conditions ensuring the mean square exponential dissipativity of singularly perturbed stochastic delay differential equations for sufficiently small ${\varepsilon}$ > 0. An example is presented to illustrate the efficiency of the obtained results.

Delay Analysis Method Considering Productivity (생산성을 고려한 공기지연 분석방법)

  • Koo Ja-Min;Lee Jae-Seob
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.438-441
    • /
    • 2003
  • Construction delays are a common occurrence of most construction projects and difficult to analyze. there are some techniques to analyze delays, such as using CPM, Bar Chart but they are not enough to analyze concurrent and productivity lost delays. Productivity lost delays are different to interruption delays in computing the number of delays and analyzing concurrent delay. This paper describes the delay analysis method considering productivity including concurrent delay analysis.

  • PDF

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Analysis of Effects of Time-Delay in an Inverted Pendulum System Using the Controller Area Network

  • Cho, Sung-Min;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1474-1479
    • /
    • 2004
  • In this paper, the design of the network system using the CAN and the analysis of effects of time delay in the system are presented. A conventional implementation technique induces many problems because of the amount and complexity of wiring and maintenance problems. The network system reduces these problems, but it cause another problem; time delay. Time delay in a sampling time does not have much effects on the system, but time delay over the sampling time changes the control frequency and ended up makes the system unstable. It is verified that time delay between each parts has different effects on the entire system. The results from this paper will be a base for studying algorithms to reduce effects of time delay in the system using the CAN.

  • PDF

Time-Discretization of Nonlinear Systems with Time Delayed Output via Taylor Series

  • Yuanliang Zhang;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.950-960
    • /
    • 2006
  • An output time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via a digital computer. A new method for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed in this paper. This method is applied to the sampled-data representation of a nonlinear system with a constant output time-delay. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. In addition, 'hybrid' discretization schemes resulting from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. A performance of the proposed method is evaluated using two nonlinear systems with time-delay output.

Mode Analysis and Modal Delay Measurement of a Few-Mode Fiber by Using Optical Frequency Domain Reflectometry

  • Ahn Tae-Jung;Moon Sucbei;Youk Youngchun;Jung Yongmin;Oh Kyunghwan;Kim Dug Young
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.54-58
    • /
    • 2005
  • A novel mode analysis method and differential mode delay measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. The differential mode delay (DMD) of the sample fiber was measured to be 16.58 ps/m with a resolution of 1.5 ps/m. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

A Simple Technique on Estimating Delay Time Considering Crosstalk Noise in RC-class Interconnects Under Saturated Ramp Input (램프 입력에 대한 RC-class 연결선의 누화잡음을 고려한 지연시간 예측 기법)

  • Kim Ki-Young;Oh Kvung-Mi;Kim Seok-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.299-303
    • /
    • 2005
  • This paper proposes an analytic method can estimate delay time considering crosstalk noise at an arbitrary node of RC-class interconnects under saturated ramp input using a simple closed-form expression. In the case of single interconnects, algebraic expression presented in existent research can estimate delay time under ramp input using delay time under step input, and we applied it to estimate delay time considering crosstalk noise. As the result, we can provide a intuitive analysis about signal integrity of circuits that include crosstalk noise reducing computational complexity significantly.